Graph Theory in Quantum Mechanics and Thermodynamics

Ivan Contreras
University of Illinois at Urbana-Champaign

Beling Lectures
Wesleyan University, Illinois
September, 2017
Introduction

Introduction

Homework: Given the following graph:

How many paths from A to C of length 4 are there? Of length k?
Introduction

Homework: Given the following graph:
Introduction

Homework: Given the following graph:

![Graph](image)

How many paths from A to C of length 4 are there? Of length 6? length k?
Plan:

- Describe the evolution of physical systems by the Laplace operator.
Plan:
- Describe the evolution of physical systems by the Laplace operator.
- Introduce a combinatorial model to understand such evolution.

Applications: Diffusion of information on social networks, heat diffusion, topology of networks.
Plan:

- Describe the evolution of physical systems by the Laplace operator.
- Introduce a combinatorial model to understand such evolution.
- The enumerative problem: Generating function for the number of different types of walks on graphs.
Plan:

- Describe the evolution of physical systems by the Laplace operator.
- Introduce a combinatorial model to understand such evolution.
- The enumerative problem: Generating function for the number of different types of walks on graphs.
- Applications: Diffusion of information on social networks, heat diffusion, topology of networks.
Physical Motivation: Dynamics

Example

Classical Mechanics: A ball thrown from the International Space Station.
Physical Motivation: Dynamics

Example

Classical Mechanics: A ball thrown from the International Space Station.
Forces: Gravity from Earth ($-mg$).
Physical Motivation: Dynamics

Example

Classical Mechanics: A ball thrown from the International Space Station.
Forces: Gravity from Earth ($-mg$).
Dynamics: Lagrangian function $\mathcal{L}(q, \dot{q}, t) = \frac{1}{2}m(\dot{q})^2 - mgq$

- How to find the (classical) trajectory?
Physical Motivation: Dynamics

Example

Classical Mechanics: A ball thrown from the International Space Station.
Forces: Gravity from Earth \((-mg)\).
Dynamics: Lagrangian function \(L(q, \dot{q}, t) = \frac{1}{2} m(\dot{q})^2 - mgq\)

- How to find the (classical) trajectory?
 Principle of Minimal Action: The classical trajectory is a critical point for the function

\[
S(q) = \int_{t_0}^{t_1} L(q, \dot{q}, t) \, dt
\]
Theorem (Euler-Lagrange)

The dynamics is determined by solving the following equation:

\[
\frac{\partial}{\partial q} \mathcal{L}(q, \dot{q}, t) = \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}} \mathcal{L}(q, \dot{q}, t) \right)
\]

The solutions depend on initial conditions. Under nice properties of \(\mathcal{L} \) the solution exists and is unique.

Question: What about systems at a very small scale (e.g. subatomic particles)?

Answer: Quantum phenomena are observed!

Question: How about systems with millions of interacting particles?

Answer: Thermodynamics!
Theorem (Euler-Lagrange)

\[
\frac{\partial}{\partial q} \mathcal{L}(q, \dot{q}, t) = \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}} \mathcal{L}(q, \dot{q}, t) \right)
\]

- The solutions depend on initial conditions.
Theorem (Euler-Lagrange)

\[\frac{\partial}{\partial q} \mathcal{L}(q, \dot{q}, t) = \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}} \mathcal{L}(q, \dot{q}, t) \right) \]

- The solutions depend on initial conditions.
- Under nice properties of \(\mathcal{L} \) the solution exists and is unique.
Theorem (Euler-Lagrange)

The dynamics is determined by solving the following equation:

$$\frac{\partial}{\partial q} \mathcal{L}(q, \dot{q}, t) = \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}} \mathcal{L}(q, \dot{q}, t) \right)$$

- The solutions depend on initial conditions.
- Under nice properties of \mathcal{L} the solution exists and is unique.

Question: What about systems at a very small scale (e.g. subatomic particles)?
Theorem (Euler-Lagrange)

The dynamics is determined by solving the following equation:

$$\frac{\partial}{\partial q} \mathcal{L}(q, \dot{q}, t) = \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}} \mathcal{L}(q, \dot{q}, t) \right)$$

- The solutions depend on initial conditions.
- Under nice properties of \mathcal{L} the solution exists and is unique.

Question: What about systems at a very small scale (e.g. subatomic particles)?
Answer: Quantum phenomena are observed!

Question: How about systems with millions of interacting particles?
Answer: Thermodynamics!
Theorem (Euler-Lagrange)

The dynamics is determined by solving the following equation:

\[
\frac{\partial}{\partial q} \mathcal{L}(q, \dot{q}, t) = \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}} \mathcal{L}(q, \dot{q}, t) \right)
\]

- The solutions depend on initial conditions.
- Under nice properties of \(\mathcal{L} \) the solution exists and is unique.

Question: What about systems at a very small scale (e.g. subatomic particles)?
Answer: Quantum phenomena are observed!

Question: How about systems with millions of interacting particles?
Theorem (Euler-Lagrange)

The dynamics is determined by solving the following equation:

\[
\frac{\partial}{\partial q} \mathcal{L}(q, \dot{q}, t) = \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}} \mathcal{L}(q, \dot{q}, t) \right)
\]

- The solutions depend on initial conditions.
- Under nice properties of \(\mathcal{L} \) the solution exists and is unique.

Question: What about systems at a very small scale (e.g. subatomic particles)?
Answer: Quantum phenomena are observed!

Question: How about systems with millions of interacting particles?
Answer: Thermodynamics!
The usual classical mechanical approach fails to explain phenomena such as:
Quantum Mechanics

The usual classical mechanical approach fails to explain phenomena such as:
- Wave/Particle duality (Planck, de Broglie, Young)
Quantum Mechanics

The usual classical mechanical approach fails to explain phenomena such as:

- Wave/Particle duality (Planck, de Broglie, Young)
- Uncertainty principle (Heisenberg)
Quantum Mechanics

The usual classical mechanical approach fails to explain phenomena such as:

- Wave/Particle duality (Planck, de Broglie, Young)
- Uncertainty principle (Heisenberg)
- Superposition of states (Schrödinger)
Two-slit experiment by Young

Source: Wikipedia.org
The mathematics of QM

- Configuration space $\mathbb{R}^n \mapsto$ Space of states $\mathcal{H} = L_2(\mathbb{R}^n)$ (states of a quantum particle).
The mathematics of QM

- Configuration space $\mathbb{R}^n \rightarrow$ Space of states $\mathcal{H} = L_2(\mathbb{R}^n)$ (states of a quantum particle).
- Classical Measurement \rightarrow Self adjoint operators on \mathcal{H}.
The mathematics of QM

- Configuration space $\mathbb{R}^n \mapsto$ Space of states $\mathcal{H} = L^2(\mathbb{R}^n)$ (states of a quantum particle).
- Classical Measurement \mapsto Self adjoint operators on \mathcal{H}.
- Classical evolution \mapsto Schrödinger’s equation.
Schrödinger’s equation

The evolution of a quantum state Ψ is given by the solution of the differential equation

$$i\hbar \frac{\partial |\Psi\rangle}{\partial t} = \left(-\frac{\hbar^2}{2m} \Delta + V\right) |\Psi\rangle,$$

where $|\Psi\rangle = \Psi(x,t)$ is the state. $\Delta = \sum_{n,i=1}^{\infty} \frac{\partial^2}{\partial x^2}$ is the Laplace operator. V is the classical potential.
Schrödinger’s equation

The evolution of a quantum state Ψ is given by the solution of the differential equation

$$i\hbar \frac{\partial |\Psi\rangle}{\partial t} = \left(\frac{-\hbar^2}{2m} \Delta + V \right) |\Psi\rangle,$$

where

- $|\Psi\rangle = \Psi(x, t)$ is the state.
Schrödinger’s equation

The evolution of a quantum state Ψ is given by the solution of the differential equation

$$i\hbar \frac{\partial |\Psi\rangle}{\partial t} = \left(\frac{-\hbar^2}{2m} \Delta + V\right) |\Psi\rangle,$$

where

- $|\Psi\rangle = \Psi(x, t)$ is the state.
- $\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$ is the Laplace operator.
The evolution of a quantum state Ψ is given by the solution of the differential equation

$$i\hbar \frac{\partial |\Psi\rangle}{\partial t} = \left(-\frac{\hbar^2}{2m} \Delta + V \right) |\Psi\rangle,$$

where

- $|\Psi\rangle = \Psi(x, t)$ is the state.
- $\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$ is the Laplace operator.
- V is the classical potential.
A similar equation (with similar symbols!) describes the thermodynamics of a system, i.e. the distribution of heat of a region over time.
A similar equation (with similar symbols!) describes the thermodynamics of a system, i.e. the distribution of heat of a region over time.

\[\frac{\partial \Psi(x, t)}{\partial t} = k \Delta \Psi(x, t), \]

where \(k \in \mathbb{R} \).
Challenges

These two are non trivial PDE’s, dependent on the geometry (e.g. metric) and topology (e.g. genus) of the configuration space.
These two are non trivial PDE’s, dependent on the geometry (e.g. metric) and topology (e.g. genus) of the configuration space.

Sensitive to boundary conditions.
Challenges

- These two are non trivial PDE’s, dependent on the geometry (e.g. metric) and topology (e.g. genus) of the configuration space.
- Sensitive to boundary conditions.
- Schödinger’s equation is quite sensitive to the choice of potential V.
Proposal: QM and TD on a graph

- Configuration space $\mathbb{R}^n \implies$ Finite graph $\Gamma = (V, E)$.
Proposal: QM and TD on a graph

- Configuration space $\mathbb{R}^n \Rightarrow$ Finite graph $\Gamma = (V, E)$.
- Space of quantum states $\mathcal{H} = L_2(\mathbb{R}^n)$ (states of a quantum particle on \mathbb{R}^n) $\Rightarrow \mathcal{H}_{\Gamma} = \mathbb{C}^{|V|}$ (linear functions on Γ)
Proposal: QM and TD on a graph

- Configuration space $\mathbb{R}^n \implies$ Finite graph $\Gamma = (V, E)$.
- Space of quantum states $\mathcal{H} = L_2(\mathbb{R}^n)$ (states of a quantum particle on \mathbb{R}^n) \implies $\mathcal{H}_\Gamma = \mathbb{C}^{|V|}$ (linear functions on Γ)
- Quantum measurements \implies Self adjoint $|V| \times |V|$-matrices.
Proposal: QM and TD on a graph

- Configuration space $\mathbb{R}^n \Rightarrow$ Finite graph $\Gamma = (V, E)$.
- Space of quantum states $\mathcal{H} = L_2(\mathbb{R}^n)$ (states of a quantum particle on \mathbb{R}^n) $\Rightarrow \mathcal{H}_\Gamma = \mathbb{C}^{|V|}$ (linear functions on Γ).
- Quantum measurements \Rightarrow Self adjoint $|V| \times |V|$-matrices.
- Quantum evolution \Rightarrow Graph Schrödinger’s equation.
The Graph Laplacian

Definition

If $\Gamma = (V, E)$ is a finite graph, the graph Laplacian Δ_Γ is the $|V| \times |V|$-matrix defined by

$$\Delta_\Gamma(i, j) = \begin{cases}
| \text{Neighbors of } v_i | & \text{if } i = j \\
-1 & \text{if } i \text{ and } j \text{ are neighbors} \\
0 & \text{otherwise}
\end{cases}$$
The Graph Laplacian

Definition

If \(\Gamma = (V, E) \) is a finite graph, the graph Laplacian \(\Delta_\Gamma \) is the \(|V| \times |V| \)-matrix defined by

\[
\Delta_\Gamma(i, j) = \begin{cases}
|\text{Neighbors of } v_i| & \text{if } i = j \\
-1 & \text{if } i \text{ and } j \text{ are neighbors} \\
0 & \text{otherwise}
\end{cases}
\]

\(\Delta_\Gamma \) enjoys similar properties as \(\Delta \): self adjoint, non negative definite.
The Graph Laplacian

Definition

If \(\Gamma = (V, E) \) is a finite graph, the graph Laplacian \(\Delta_\Gamma \) is the \(|V| \times |V| \)-matrix defined by

\[
\Delta_\Gamma(i, j) = \begin{cases}
| \text{Neighbors of } v_i | & \text{if } i = j \\
-1 & \text{if } i \text{ and } j \text{ are neighbors} \\
0 & \text{otherwise}
\end{cases}
\]

\(\Delta_\Gamma \) enjoys similar properties as \(\Delta \): self adjoint, non negative definite.

What does \(\Delta_\Gamma \) do as an operator?
The Graph Laplacian

Definition

If $\Gamma = (V, E)$ is a finite graph, the graph Laplacian Δ_Γ is the $|V| \times |V|$-matrix defined by

$$\Delta_\Gamma(i, j) = \begin{cases}
| \text{Neighbors of } v_i | & \text{if } i = j \\
-1 & \text{if } i \text{ and } j \text{ are neighbors} \\
0 & \text{otherwise}
\end{cases}$$

Δ_Γ enjoys similar properties as Δ: self adjoint, non negative definite.

What does Δ_Γ do as an operator? Answ: Difference operator
The Graph Laplacian

Definition

If $\Gamma = (V, E)$ is a finite graph, the graph Laplacian Δ_Γ is the $|V| \times |V|$-matrix defined by

$$\Delta_\Gamma(i, j) = \begin{cases}
| \text{Neighbors of } v_i | & \text{if } i = j \\
-1 & \text{if } i \text{ and } j \text{ are neighbors} \\
0 & \text{otherwise}
\end{cases}$$

Δ_Γ enjoys similar properties as Δ: self adjoint, non negative definite.

What does Δ_Γ do as an operator? Answ: Difference operator

Why is Δ_Γ the right discrete Laplacian?
The Graph Laplacian

Definition

If $\Gamma = (V, E)$ is a finite graph, the graph Laplacian Δ_{Γ} is the $|V| \times |V|$-matrix defined by

$$
\Delta_{\Gamma}(i,j) = \begin{cases}
|\text{Neighbors of } v_i| & \text{if } i = j \\
-1 & \text{if } i \text{ and } j \text{ are neighbors} \\
0 & \text{otherwise}
\end{cases}
$$

Δ_{Γ} enjoys similar properties as Δ: self adjoint, non negative definite.

What does Δ_{Γ} do as an operator? Answ: Difference operator

Why is Δ_{Γ} the right discrete Laplacian? Answ: Finite elements second derivative.
Example

For $\Gamma =$

\[
\begin{bmatrix}
1 & -1 & 0 & 0 & 0 \\
-1 & 4 & -1 & -1 & -1 \\
0 & -1 & 1 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 & 1
\end{bmatrix}
\]
Example

For $\Gamma =$

Then

$$
\Delta_\Gamma = \begin{bmatrix}
1 & -1 & 0 & 0 & 0 \\
-1 & 4 & -1 & -1 & -1 \\
0 & -1 & 1 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 & 1
\end{bmatrix}.
$$
Graph Schrödinger Equation (GSE)

Definition

The combinatorial evolution of a quantum system on a graph is given by the solutions of

\[i\hbar \frac{\partial |\psi\rangle}{\partial t} = \left(-\frac{\hbar^2}{2m} \Delta \Gamma + V \right) |\psi\rangle , \]

Theorem (Del Vecchio(2012), Mnev (2016))

When \(V = 0 \) the solution of the GSE exists, is unique and given by

\[|\psi_{tf}\rangle = e^{i\hbar \left(\frac{1}{2m} \Delta \Gamma + V \right)} |\psi_{t0}\rangle . \]
Graph Schrödinger Equation (GSE)

Definition

The combinatorial evolution of a quantum system on a graph is given by the solutions of

\[i\hbar \frac{\partial |\Psi\rangle}{\partial t} = \left(-\frac{\hbar^2}{2m} \Delta_{\Gamma} + V \right) |\Psi\rangle, \]

Theorem (Del Vecchio(2012), Mnev (2016))

When \(V = 0 \) *the solution of the GSE exists, is unique and given by*

\[|\Psi_{t_f}\rangle = e^{i\frac{\hbar(t_f-t_0)\Delta_{\Gamma}}{2m}} |\Psi_{t_0}\rangle \]
The enumerative problem: Main results

The matrix valued function $Z(t) = e^{\frac{i\hbar(t_f - t_0)\Delta r}{2m}}$ is counting something!
The enumerative problem: Main results

The matrix valued function \(Z(t) = e^{i\hbar(t_f - t_0)\Delta \Gamma / 2m} \) is counting something!

Definition

A generalized walk on a graph \(\Gamma \) allows for the particle to stay at a vertex after an edge has been chosen.
The enumerative problem: Main results

The matrix valued function \(Z(t) = e^{\frac{i\hbar(t_f-t_0)\Delta\Gamma}{2m}} \) is counting something!

Definition

A generalized walk on a graph \(\Gamma \) allows for the particle to stay at a vertex after an edge has been chosen.

Theorem (Del Vecchio (2012), C-Yu (2017))

The coefficients \(C^k(i, j) \) of the Taylor expansion

\[
Z(t) = \sum_{k=0}^{\infty} \left(\frac{i\hbar}{2m} \right)^k t^k C^k(i, j)
\]

is the number of signed generalized walks of length \(k \) starting at \(i \) and ending \(j \).
The enumerative problem: Main results

This formula has been recently generalized for hypergraphs (higher dimensional generalizations of graphs)
This formula has been recently generalized for hypergraphs (higher dimensional generalizations of graphs)

Theorem (C-, Loeb, Yu (2017))

A similar formula holds for generalized walks on hypergraphs.
The enumerative problem: Main results

This formula has been recently generalized for hypergraphs (higher dimensional generalizations of graphs)

Theorem (C-, Loeb, Yu (2017))

A similar formula holds for generalized walks on hypergraphs.

Definition

An edge-to-edge generalized walk is the dual of a generalized walk: the particle starts and ends at edges and travels through vertices.
The enumerative problem: Main results

This formula has been recently generalized for hypergraphs (higher dimensional generalizations of graphs)

Theorem (C-, Loeb, Yu (2017))

A similar formula holds for generalized walks on hypergraphs.

Definition

An edge-to-edge generalized walk is the dual of a generalized walk: the particle starts and ends at edges and travels through vertices.

Theorem (C-, Loeb, Yu (2017))

The solution of GSE for the space of states $\mathcal{H} = \mathbb{C}^{|V|} \oplus \mathbb{C}^{|E|}$ gives a generating function for the number of edge-to-edge generalized walks.
Summary: QM Versus GQM

Physics

Graph QM

QM

Quantum Particle

point/wave

point/wave

Configuration Space

Γ

R

N

States

$|\Psi\rangle \in C$

$|V|$

$|\Psi\rangle \in L^2(R^N)$

Evolve

$i\hbar \frac{\partial}{\partial t} \Psi = -\frac{\hbar}{2m} \Delta \Gamma |\Psi\rangle$

Solution

$\Psi(t) = e^{i\frac{\hbar}{2m} \Delta \Gamma t} \Psi_0$

$\Psi(t) = e^{i\frac{\hbar}{2m} \Delta t} \Psi_0$

The Δ in each Schrödinger equation is different!!!
Summary: QM Versus GQM

<table>
<thead>
<tr>
<th>Physics</th>
<th>Graph QM</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Particle</td>
<td>point/wave</td>
<td>point/wave</td>
</tr>
<tr>
<td>Configuration Space</td>
<td>Γ</td>
<td>\mathbb{R}^N</td>
</tr>
<tr>
<td>States</td>
<td>$</td>
<td>\Psi\rangle \in \mathbb{C}^{</td>
</tr>
<tr>
<td>Evolve Ψ</td>
<td>$i\hbar \frac{\partial}{\partial t} \Psi = -\frac{\hbar^2}{2m} \Delta_{\Gamma}</td>
<td>\Psi\rangle$</td>
</tr>
<tr>
<td>Solution</td>
<td>$\Psi_t = e^{i\frac{\hbar}{2m} \Delta_{\Gamma} t/\hbar} \Psi_0$</td>
<td>$\Psi_t = e^{i\frac{\hbar}{2m} \Delta t/\hbar} \Psi_0$</td>
</tr>
</tbody>
</table>

*The Δ in each Schrödinger equation is different!!!
We analyze a Twitter network composed of members of the IGL group, and volunteers. The diffusion of information is modeled by

\[
\frac{\partial \Psi(x, t)}{\partial t} = -\Delta \Psi(x, t),
\]

\[
\mathcal{H} = \mathbb{C}^{|\mathcal{V}|}
\]

\[
\Psi(t) = e^{-\Delta t/\hbar}\Psi_0, \text{ where } \Psi_0 = (1, 0, \ldots, 0)^T
\]
Twitter Simulation
By using the software *Molecular Biology*, we were able to model the (combinatorial) heat diffusion of gallium while melting on a person’s hand.
By using the software *Molecular Biology*, we were able to model the (combinatorial) heat diffusion of gallium while melting on a person’s hand. *Heat Diffusion on Gallium*
Thanks for your attention!
IGL Team members: Sarah Loeb (Grad student), Rodrigo Araiza, Andrew Eberlein, Zhe Hu, Mateo Muro, Leonardo Rodriguez, Michael Toriyama, Boyan Xu, Chengzheng Yu, Yunting Zhang.

Papers and Preprints:

