A review of some important calculus topics

1. Chain Rule:

 (a) Let \(h(t) = \sin(\cos(t \tan t)) \). Find the derivative with respect to \(t \).

 (b) Let \(s(x) = \sqrt[3]{x} \) where \(x(t) = \ln(f(t)) \) and \(f(t) \) is a differentiable function. Find \(\frac{ds}{dt} \).

2. Parameterized curves:

 (a) Describe and sketch the curve given parametrically by

 \[
 \begin{align*}
 x &= 5 \sin(3t) \\
 y &= 3 \cos(3t)
 \end{align*}
 \]

 for \(0 \leq t < \frac{2\pi}{3} \).

 What happens if we instead allow \(t \) to vary between 0 and \(2\pi \)?

 (b) Set up, but do not evaluate an integral that calculates the arc length of the curve described in part (a).

 (c) Consider the equation \(x^2 + y^2 = 16 \). Graph the set of solutions of this equation in \(\mathbb{R}^2 \) and find a parameterization that traverses the curve once counterclockwise.

3. 1st and 2nd Derivative Tests:

 (a) Use the 2nd Derivative Test to classify the critical numbers of the function \(f(x) = x^4 - 8x^2 + 10 \).

 (b) Use the 1st Derivative Test and find the extrema of \(h(s) = s^4 + 4s^3 - 1 \).

 (c) Explain why the 2nd Derivative test is unable to classify all the critical numbers of \(h(s) = s^4 + 4s^3 - 1 \).

4. Consider the function \(f(x) = x^2 e^{-x} \).

 (a) Find the best linear approximation to \(f \) at \(x = 0 \).

 (b) Compute the second-order Taylor polynomial at \(x = 0 \).

 (c) Explain how the second-order Taylor polynomial at \(x = 0 \) demonstrates that \(f \) must have a local minimum at \(x = 0 \).

5. Consider the integral \(\int_0^{\sqrt{3\pi}} 2x \cos(x^2) \, dx \).

 (a) Sketch the area in the \(xy \)-plane that is implicitly defined by this integral.

 (b) To evaluate, you will need to perform a substitution. Choose a proper \(u = f(x) \) and rewrite the integral in terms of \(u \). Sketch the area in the \(uv \)-plane that is implicitly defined by this integral.

 (c) Evaluate the integral \(\int_0^{\sqrt{3\pi}} 2x \cos(x^2) \, dx \).