Tuesday, December 8 ** More on Stokes' Theorem

1. Let \(\mathbf{F} = \langle y^2, x^2, z^2 \rangle \). Show that

\[
\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}
\]

for any two closed curves as shown lying on a cylinder about the z-axis.

\[
\text{FIGURE 18}
\]

\[
\text{FIGURE 20}
\]

\[
\text{SOLUTION:}
\]

Let \(A \) be the region of the cylinder bounded by \(C_1 \) and \(C_2 \), oriented via the outward pointing normals. Thus \(\partial A = C_1 - C_2 \). Hence

\[
\int_{C_1} \mathbf{F} \cdot d\mathbf{r} - \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{\partial A} \mathbf{F} \cdot d\mathbf{r} = \int_{\partial A} \left(\operatorname{curl} \mathbf{F} \right) \cdot d\mathbf{S} = \int_{\partial A} (0, 0, 2(x - y)) \cdot \mathbf{n} A = 0
\]

since \(\mathbf{n} \) has z-component 0. Thus \(\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r} \)

2. Consider the surface \(T \) which is the intersection of the plane \(x + 2y + 3z = 1 \) with the first octant.

(a) Draw a picture of \(T \).

\[
\text{SOLUTION:}
\]

\[
\text{FIGURE 21}
\]

(b) Use Stokes' Theorem to evaluate \(\int_{\partial T} \mathbf{F} \cdot d\mathbf{r} \) for \(\mathbf{F} = \langle y, -2z, 4x \rangle \).

\[
\text{SOLUTION:}
\]

Anormal vector \(\mathbf{v} \) to the plane is \(\langle 1, 2, 3 \rangle \) so a unit normal vector for \(T \) is \(\frac{1}{\sqrt{14}} \langle 1, 2, 3 \rangle \). By Stokes', we need to evaluate

\[
\int_{T} \left(\operatorname{curl} \mathbf{F} \right) \cdot d\mathbf{A} = \int_{T} \langle 2, -4, -1 \rangle \cdot d\mathbf{A} = \int_{T} \frac{-9}{\sqrt{14}} d\mathbf{A} = \frac{-9}{\sqrt{14}} \operatorname{Area}(T).
\]
Area\((T) = \frac{1}{2} |\mathbf{a} \times \mathbf{b}| \) where \(\mathbf{a} = \langle -1, 1/2, 0 \rangle \) and \(\mathbf{b} = \langle 0, -1/2, 1/3 \rangle \), so Area\((T) = \frac{1}{2} \sqrt{\frac{7}{18}} \). So
\[
\int \int_T (\text{curl} \mathbf{F}) \cdot \mathbf{n} \, dA = -\frac{9}{2\sqrt{14}} \cdot \sqrt{\frac{7}{3\sqrt{2}}} = -\frac{3}{4}.
\]
Alternative approach: Parametrize \(T \) by \(\mathbf{r}(u, v) = \langle u, v, \frac{1}{3} (1 - u - 2v) \rangle \) with domain \(D = \{ 0 \leq u \leq 1 \text{ and } 0 \leq v \leq \frac{1}{2} - \frac{u}{2} \} \).
\[
\mathbf{r}_u \times \mathbf{r}_v = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & -1/3 \\
0 & 1 & -2/3 \\
\end{vmatrix} = \langle 1/3, 2/3, 1 \rangle
\]
So flux = \(\int \int_D \langle 2, -4, -1 \rangle \cdot \langle 1/3, 2/3, 1 \rangle \, dv \, du = \int \int_D -3 \, dA = -3 \) Area\((D) = -3/4. \)

3. Carefully explain how Green's Theorem is actually a special case of Stokes' Theorem.

SOLUTION:

Green's theorem is just Stokes' theorem for a surface and vector field that lie totally inside the xy-plane. Let's consider the situation of Green's theorem — we start with a vector field in the xy-plane, which looks like \(\langle P(x, y), Q(x, y) \rangle \), and a region \(D \) inside the plane with some boundary curves \(\partial D \). Let's think about these living inside of the xy-plane in 3-space, \(\mathbb{R}^3 \), just extending in the most obvious way, so that we can see what Stokes' theorem says. Let us now have the vector field \(\mathbf{F} \) on \(\mathbb{R}^3 \) defined by
\[
\mathbf{F}(x, y, z) = \langle P(x, y), Q(x, y), 0 \rangle
\]
The region \(D \) is now a surface which happens to lie entirely inside the plane \(z = 0 \). Computing the curl of \(\mathbf{F} \) gives
\[
\text{curl}(\mathbf{F}) = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & 0 \\
\end{vmatrix} = \langle \frac{\partial Q}{\partial z} - \frac{\partial P}{\partial y}, \frac{\partial P}{\partial z} - \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \rangle = \langle 0, 0, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \rangle
\]
as the functions \(P \) and \(Q \) only depend on \(x \) and \(y \). Looking at the flux of the curl of this vector field \(\mathbf{F} \) through the surface with upwards normal \(\mathbf{n} = \langle 0, 0, 1 \rangle \), we have the following expression:

Flux through \(D \) of \(\text{curl}(\mathbf{F}) = \int \int_D \text{curl}(\mathbf{F}) \cdot \mathbf{n} \, dS = \int \int_D \langle 0, 0, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \rangle \cdot \langle 0, 0, 1 \rangle \, dS = \int \int_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \, dS \\
\]
Technically, we should call the surface living inside of \(\mathbb{R}^3 \) something like \(D' \), and parametrize by \(r(x, y) = \langle x, y, 0 \rangle \), where the domain for \((x, y) \) is \(D \). In this case, the surface integral above becomes exactly a standard double integral in the plane:
\[
\int \int_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \, dA
\]
On the other hand, Stokes' theorem gives us a second expression which computes the flux of \(\text{curl}(\mathbf{F}) \): the line integral of \(\mathbf{F} \) along the boundary of \(D \). Note that with upward normal, the rule for the direction is exactly the same as the one for Green's theorem – left arm points in walking
along the direction where your head points up in the direction of the normal. So, we have exactly the statement of Green’s theorem:

\[
\text{Flux through } D \text{ of } \text{curl}(F) = \iint_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \, dA
\]

and

\[
\text{Flux through } D \text{ of } \text{curl}(F) = \int_{\partial D} F \cdot dr
\]

4. Work the following problem.

20. The magnetic field \(B \) due to a small current loop (which we place at the origin) is called a magnetic dipole (Figure 18). Let \(\rho = (x^2 + y^2 + z^2)^{1/2} \). For \(\rho \) large, \(B = \text{curl}(A) \), where

\[
A = \left(-\frac{y}{\rho^3}, \frac{x}{\rho^3}, 0\right)
\]

(a) Let \(C \) be a horizontal circle of radius \(R \) with center \((0, 0, c)\), where \(c \) is large. Show that \(A \) is tangent to \(C \).

(b) Use Stokes’ Theorem to calculate the flux of \(B \) through \(C \).

\\[
\text{SOLUTION:}
\]

(a) Parametrize the circle at height \(c \) and radius \(R \) centered on the \(z \) axis by \(r(t) = (R \cos(t), R \sin(t), c) \). Then, the tangent is given by

\[
r'(t) = (-R \sin(t), R \cos(t), 0)
\]

Substituting \(x(t) = R \cos(t) \) and so on into the vector field \(A \), we get what the vector field is at the corresponding point:

\[
A(r(t)) = \left(-\frac{R \sin(t)}{\rho^3}, \frac{R \cos(t)}{\rho^3}, 0\right)
\]

It doesn't matter what \(\rho \) is exactly — we just want to know if the two vectors are multiples of each other at \(r(t) \), which they are:

\[
r'(t) \cdot \frac{1}{\rho^3} = A(r(t))
\]
(b) Let D be the horizontal disk enclosed by C. We’ll compute the flux with upward normal. By Stokes’ theorem,

$$\iint_D B \cdot \mathbf{n} dS = \iint_D \text{curl}(\mathbf{A}) \cdot \mathbf{n} dS = \int_C \mathbf{A} \cdot d\mathbf{r}$$

Here C is traversed counterclockwise as seen from above to match the upward normal. Then, using our parametrization from before:

$$\int_C \mathbf{A} \cdot d\mathbf{r} = \int_0^{2\pi} A(r(t)) \cdot r'(t) dt = \int_0^{2\pi} \frac{r'(t) \cdot r'(t) dt}{\rho^3} = \int_0^{2\pi} \frac{R^2}{(R^2 + c^2)^{3/2}} dt$$

as $r'(t) \cdot r'(t) = R^2 \sin(t)^2 + R^2 \cos(t)^2 + 0^2$ and $\rho^3 = \left(\sqrt{(R \cos(t))^2 + (R \sin(t))^2 + c^2}\right)^3$

Because R and c are fixed, we get a final answer immediately of

$$\iint_D B \cdot \mathbf{n} dS = \frac{2\pi R^2}{(R^2 + c^2)^{3/2}}$$