1. Let S be the portion of the cylinder of radius 2 about the x-axis where $-1 \leq x \leq 1$.

 (a) Draw a picture of S and compute its area without doing any integrals. Hint: How could you make this cylinder out of paper?
 SOLUTION: We have $\text{Area}(S) = 8\pi$ since we can cut S along a line in the xy-plane and flatten it out into a $2 \times 4\pi$ rectangle.

 (b) Find a parameterization $\mathbf{r}(u, v)$ of S.
 SOLUTION:
 Let $u = x$ and $v = \text{angle about the } x - \text{axis}$, so that
 $$\mathbf{r}(u, v) = (u, 2\cos v, 2\sin v)$$
 with domain $D = \{-1 \leq u \leq 1 \text{ and } 0 \leq v \leq 2\pi\}$.

 (c) Does the normal vector field associated to your parameterization point into or out of S? First, try to determine this without doing any calculations, and then check your answer by evaluating $\mathbf{r}_u \times \mathbf{r}_v$.
 SOLUTION:
 By the right hand rule, the vector points inwards. Check:
 $$\mathbf{r}_u \times \mathbf{r}_v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 0 \\ 0 & -2\sin v & 2\cos v \end{vmatrix} = \langle 0, -2\cos v, -2\sin v \rangle$$
 At $u = 0, v = 0$ we have $\mathbf{r}_u \times \mathbf{r}_v = \langle 0, -2, 0 \rangle$ which points inwards.

 (d) If necessary, change your parameterization so that the normal vector field points *inwards*.
 SOLUTION:
 If your vector points outwards, interchanging the role of u and v will reverse its direction.

 (e) Now consider the vector field $\mathbf{F} = \langle -z, xz, -xy \rangle$. Compute $\text{curl}\mathbf{F}$.
 SOLUTION:
 $\text{curl}\mathbf{F} = \langle -2x, y - 1, z \rangle$
(f) Check that \(\text{curl} \mathbf{F} \) is the sum of \(\mathbf{G} = \langle -2x, -1, 0 \rangle \) and \(\mathbf{H} = \langle 0, y, z \rangle \).

SOLUTION:
\[
\mathbf{G} + \mathbf{H} = \langle -2x, -1, 0 \rangle + \langle 0, y, z \rangle = \langle -2x, y - 1, z \rangle = \text{curl} \mathbf{F}
\]

(g) Use geometric arguments to determine whether the flux of \(\mathbf{G} \) is positive, zero, or negative. Remember that we have oriented \(S \) so that the normals point inwards. Do the same for \(\mathbf{H} \) and \(\text{curl} \mathbf{F} \).

SOLUTION:
Since every normal vector to \(S \) has 0 \(x \)-component, the flux of \(\mathbf{G} \) is the same as the flux of \(\langle 0, -1, 0 \rangle \), which by symmetry must be equal to 0. For \(\mathbf{H} \), at each point of \(S \) \(\mathbf{H} \) points outward from the surface, so the flux is negative (since the normals point inwards). In fact, \(\mathbf{H} = -2\mathbf{n} \).

(h) Using your parametrization, directly compute the flux of \(\text{curl} \mathbf{F} \).

SOLUTION:
\[
\int \int_S \text{curl} \mathbf{F} \cdot \mathbf{n} \, dA = \int_{-1}^{1} \int_{0}^{2\pi} \langle -2u, 2\cos v - 1, 2\sin v \rangle \cdot (\mathbf{r}_u \times \mathbf{r}_v) \, dv \, du = \int_{-1}^{1} \int_{0}^{2\pi} -4(\cos^2 v + \cos v \sin^2 v) \, dv \, du = 4 \int_{-1}^{1} -1 + \cos v \, dv \, du = 4 \int_{-1}^{1} -2 \pi \, du = -16\pi
\]

(i) Check your answer in (h) using Stokes’ Theorem. Note here that \(\partial S \) has two boundary components, and make sure that you orient them correctly.

SOLUTION:
The boundary components should be oriented like so:

Parametrize \(C_1 \) by \(\langle 1, 2\cos t, 2\sin t \rangle \) for \(0 \leq t \leq 2\pi \) and \(C_2 \) by \(\langle -1, 2\cos t, -2\sin t \rangle \) for \(0 \leq t \leq 2\pi \). Now
\[
\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{2\pi} \langle -2\sin t, 2\sin t, -2\cos t \rangle \cdot \langle 0, -2\sin t, 2\cos t \rangle \, dt = \int_{0}^{2\pi} -4(\sin t^2 + \cos^2 t) \, dt = -8\pi.
\]
Similarly, \(\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = -8\pi \). Thus \(\int_{\partial S} \mathbf{F} \cdot d\mathbf{r} = -8\pi + (-8\pi) = -16\pi = \int \int_S (\text{curl} \mathbf{F}) \cdot \mathbf{n} \, dA \) as guaranteed by Stokes’ theorem.
(j) Check your answer in (h) a second time by using what you learned in (g) to compute the flux of \(\mathbf{G} \) and \(\mathbf{H} \).

SOLUTION:
We know \(\text{curl} \mathbf{F} = \mathbf{G} + \mathbf{H} \) and the flux of \(\mathbf{G} \) through \(S \) is 0. Since \(\mathbf{H} = -2\mathbf{n}, \mathbf{H} \cdot \mathbf{n} = -2 \). Hence

\[
\int \int_S (\text{curl} \mathbf{F}) \cdot \mathbf{n} dA = \int \int_S \mathbf{H} \cdot \mathbf{n} dA = \int \int_S -2 dA = -2 \text{Area}(S) = -2 \cdot 8\pi = -16\pi
\]

2. Consider the surface \(S \) shown below, which is oriented using the outward pointing normal.

(a) Suppose \(\mathbf{F} \) is a vector field on \(\mathbb{R}^3 \) which is equal to \(\text{curl} \mathbf{G} \) for some unknown vector field \(\mathbf{G} \). Suppose the line integral of \(\mathbf{G} \) around the unit circle (oriented counter-clockwise) in the \(xy \)-plane is 25. Determine the flux of \(\mathbf{F} \) through \(S \).

SOLUTION:
By Stokes: \(\int \int_S \mathbf{F} \cdot d\mathbf{S} = \int_{\partial S} \mathbf{G} \cdot d\mathbf{r} = 25 \).

(b) Suppose \(\mathbf{H} \) is a vector field on \(\mathbb{R}^3 \) which is equal to \(\text{curl} \mathbf{B} \) for some unknown vector field \(\mathbf{B} \). If \(\mathbf{H}(x, y, 0) = \mathbf{k} \), find the flux of \(\mathbf{H} \) through the surface \(S \).

SOLUTION:
Let \(D \) be the unit disc with upwards normal \(\mathbf{n} = \mathbf{k} = \langle 0, 0, 1 \rangle \) Then \(S \) and \(D \) have the same oriented boundary, the counter-clockwise oriented unit circle \(C \). Hence by Stokes:

\[
\int \int_S \mathbf{H} \cdot d\mathbf{r} = \int_C \mathbf{B} \cdot d\mathbf{r} = \int \int_D \mathbf{H} \cdot d\mathbf{R} = \int \int_D \mathbf{k} \cdot k dA = \text{Area}(D) = \pi.
\]