Thursday, October 1 * Solutions * Taylor series, the 2nd derivative test, and changing coordinates.

1. Consider $f(x, y) = 2 \cos x - y^2 + e^{xy}$.

 (a) Show that $(0,0)$ is a critical point for f.

 SOLUTION:
 \[
 \frac{\partial f}{\partial x}|_{(0,0)} = (-2 \sin x + ye^{xy})|_{(0,0)} = 0 \quad \text{and} \quad \frac{\partial f}{\partial y}|_{(0,0)} = (-2y + xe^{xy})|_{(0,0)} = 0
 \]

 (b) Calculate each of f_{xx}, f_{xy}, f_{yy} at $(0,0)$ and use this to write out the 2nd-order Taylor approximation for f at $(0,0)$.

 SOLUTION:
 The second order Taylor approximation of a function $f(x, y)$ at $(0,0)$ is given by
 \[
 T_2(x, y) = f(0,0) + f_x(0,0)x + f_y(0,0)y + (f_{xx}(0,0)/2)x^2 + (f_{xy}(0,0)/2)y^2 + f_{yy}(0,0)xy.
 \]
 For this problem we have $f_{xx} = -2 \cos x + ye^{xy}$, $f_{xy} = 2 + xe^{xy}$, and $f_{yy} = e^{xy} + xye^{xy}$. So $f_{xx}(0,0) = -2 = f_{yy}(0,0)$ and $f_{xy}(0,0) = 1$. Also $f(0,0) = 3$. So the second order Taylor approximation for f at $(0,0)$ is $g(x, y) = 3 - x^2 - y^2 + xy$.

2. Let $g(x, y)$ be the approximation you obtained for $f(x, y)$ near $(0,0)$ in 1(b). It’s not clear from the formula whether g, and hence f, has a min, max, or a saddle at $(0,0)$. Test along several lines until you are convinced you’ve determined which type it is. In the next problem, you’ll confirm your answer in two ways.

 SOLUTION:
 Let’s test a general line $y = mx$ which goes through $(0,0)$ as $x \to 0$. Then $g(x, mx) = 3 - x^2 - m^2x^2 + mx^2 = 3 - (1 - m + m^2)x^2$. The polynomial $1 - m + m^2$ is always positive (it opens upward and has its global minimum at $m = 1/2$ where $1 - m + m^2 > 0$). So $g(x, mx)$ is always a downward opening parabola. This suggests that $(0,0)$ is a relative maximum.

3. Consider alternate coordinates (u, v) on \mathbb{R}^2 given by $(x, y) = (u - v, u + v)$.

 (a) Sketch the u- and v-axes relative to the usual x- and y-axes, and draw the points whose (u, v)-coordinates are: $(-1,2), (1,1), (1,-1)$.

 SOLUTION:
 If we express u and v in terms of x and y we get $u = 1/2(x + y)$ and $v = 1/2(y - x)$. So the u-axis is given in x and y coordinates by all multiples of the vector $(1,1)$ and the v-axis is given by all multiples of the vector $(-1,1)$. The two axes and the points are shown below.
(b) Express \(g \) as a function of \(u \) and \(v \), and expand and simplify the resulting expression.

SOLUTION:

\[
3 - x^2 - y^2 + xy = 3 - (u - v)^2 - (u + v)^2 + (u - v)(u + v) = 3 - (u^2 - 2uv + v^2) - (u^2 + 2uv + v^2) + u^2 - v^2 = 3 - u^2 - 3v^2.
\]

(c) Explain why your answer in 3(b) confirms your answer in 2.

SOLUTION:

This is an elliptic paraboloid (in \(uv \) coordinates) opening downward with maximum at \((0, 0, 3)\), so it confirms that \((0, 0)\) is a local maximum (\((0, 0)\) goes to \((0, 0)\) under the transformation, so this reasoning makes sense).

(d) Sketch a few level sets for \(g \). What do the level sets of \(f \) look like near \((0, 0)\)?

SOLUTION: The level sets are sketched for \(g = 2.7, 2.8, 2.9 \) on the left and for \(f = 2.7, 2.8, 2.9 \) on the right. The level sets for \(g \) are ellipses that approximate the level sets of \(f \) close to \((0, 0)\). The ellipses shrink as they get closer to \(g(x, y) = 3 \), which consists of the single solution \((x, y) = (0, 0)\).

(e) It turns out that there is always a similar change of coordinates so that the Taylor series of a function \(f \) which has a critical point at \((0, 0)\) looks like \(f(u, v) \approx f(0, 0) + au^2 + bv^2 \). In fact this is why the 2\(^{nd}\) derivative test works.

Double check your answer in 2 by applying the 2\(^{nd}\)-derivative test directly to \(f \).

SOLUTION:
The Hessian $f_{xx}f_{yy} - (f_{xy})^2$ is $(-2)(-2) - 1^2 = 3 > 0$ at $(0,0)$ and $f_{xx}(0,0) = -2 < 0$. So f has a relative maximum at $(0,0)$ as suspected.

4. Consider the function $f(x, y) = 3xe^y - x^3 - e^{3y}$.

(a) Check that f has only one critical point, which is a local maximum.

SOLUTION:

$f_x = 3e^y - 3x^2$ and $f_y = 3xe^y - 3e^{3y}$. $f_y = 0$ only if $x = e^{2y}$ and $f_x = 0$ only if $e^y = x^2$. Solving these simultaneously we see that x must satisfy $(x^2)^2 = (e^y)^2 = x$, so $x = 0, -1, \text{ or } 1$. But $x = e^{2y} > 0$ so the only critical point is $x = 1, y = 0$. Calculating, we see that $f_{xx}(1,0) = f_{yy}(1,0) = -6$ and $f_{xy}(1,0) = 3$. So the Hessian $f_{xx}f_{yy} - (f_{xy})^2 = 36 - 9 = 27 > 0$ at $(1,0)$. Since $f_{xx}(1,0) < 0$, the second derivative test tells us that $f(1,0) = 1$ is a local maximum.

(b) Does f have an absolute maxima? Why or why not?

SOLUTION:

f does not have an absolute maximum. For instance if we take the trace curve $y = 0$ we get $f(x,0) = 3x - x^3 - 1$, which is unbounded as $x \to \infty$. Absolute maxima and minima are only guaranteed over a closed and bounded set in the domain. The plane \mathbb{R}^2 is closed but not bounded, so there is no guarantee that a continuous function will achieve an absolute maximum or minimum over \mathbb{R}^2.