Recall \[\iiint_R f \, dV = \iint_R f \, r \, dr \, d\theta \]

Cylindrical \[dV = r \, dr \, d\theta \, dz \]

\[x = r \cos \phi \]
\[y = r \sin \phi \]
\[z = z \]

Example 7.8: Consider cylinder \(x^2 + y^2 = 1 \)

below \(z = 4 \)

above \(z = 1 - x^2 - y^2 = 1 - r^2 \)

\[p(x, y, z) = \sqrt{x^2 + y^2} = r \] density

Find total mass \(\iiint_R p \, dV \).

- All (three) different ways to start (slice).

1. By \(z \) (fix height)
2. By \(r \) (fix radius)
3. By \(\theta \) (fix angle)

We will choose to fix \(r \) first (ii) (check textbook for fixing \(\theta \) first)

\[\int_0^4 \int_0^{2\pi} \int_0^{1-r^2} r \cdot p \, r \, d\theta \, dz \, dr \]

(Fix \(r \), then \(z \), then \(\theta \))
\[\int_0^1 \int_{r^2}^{4} \int_0^{2\pi} r^2 \, d\theta \, dz \, dr = \int_0^1 \int_{1-r^2}^{4} 2\pi r^2 \, dz \, dr \]
\[= \int_0^1 2\pi r^2 \, \left[z \right]_{r^2}^{4} \, dr = 2\pi \int_0^1 r^2 (4 - (1-r^2)) \, dr \]
\[= 2\pi \int_0^1 (3r^2 + r^4) \, dr = 2\pi \left(\frac{r^3}{3} + \frac{r^5}{5} \right) \bigg|_0^1 = \frac{12\pi}{5} \]

\textbf{Spherical}

\[0 \leq \rho \quad x = \rho \sin \phi \cos \theta \]
\[0 \leq \theta < 2\pi \quad y = \rho \sin \phi \sin \theta \]
\[0 \leq \phi \leq \pi \quad z = \rho \cos \phi \]

\[dV = \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi \]

\textbf{EX} Volume of sphere of radius 1

\[\iiint_R dV = \int_0^{2\pi} \int_0^\pi \int_0^1 \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi \]
\[= \int_0^{2\pi} \int_0^\pi \frac{1}{3} \rho^3 \sin \phi \, d\theta \, d\phi = \frac{2\pi}{3} \int_0^\pi \sin \phi \, d\phi \]
\[= \frac{2\pi}{3} \left(-\cos \phi \right) \bigg|_0^\pi = \frac{2\pi}{3} \left(1 - (0) \right) \]
\[= \frac{4\pi}{3} \]

\textit{Same answer, much easier to do in spherical coord.}
§ 15.9 Changing Coord.

(Not required for exam)

Goal: Want some transform $T(u,v) \rightarrow (x,y)$ to make integral easier to compute.

$$\iint f \, dx \, dy = \iint f \cdot |A| \, du \, dv.$$

Linear transform, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ invertible

$T(u,v) = A \begin{pmatrix} u \\ v \end{pmatrix} = (au + bv, cu + dv)$

In general, if $T(u,v) = (g(u,v), h(u,v))$

then

$$\iint f \, dx \, dy = \iint F \cdot |J| \, du \, dv.$$

Linear $\Rightarrow J = \begin{pmatrix} g_u & g_v \\ h_u & h_v \end{pmatrix}$