Math 595 Calculus on Meshes

Spring 2018 (Half-semester: Second 8 Weeks)

Instructor: Anil Hirani, hirani@illinois.edu

Course Description: Introduction to finite element discretization of exterior calculus on piecewise linear manifold simplicial complexes (meshes). Approximate syllabus:

1. Introduction
2. Basic homological algebra [1 lecture]
 2.1 Chain complexes (example: simplicial chain complex) and chain maps
 2.2 Cochain complexes (example: de Rham complex)
3. Unbounded operators on Hilbert spaces [2-3 lectures]
 3.1 Unbounded and closed operators
 3.2 Adjoints of unbounded operators
 3.3 Examples: grad, curl, div and their adjoints
4. Hilbert complexes [5-6 lectures]
 4.1 Hilbert complexes and their duals
 4.2 Harmonic forms and Hodge decomposition
 4.3 Poincaré inequality
 4.4 L^2 de Rham complex
 4.5 Abstract Hodge Laplacian and the Poisson's equation
 4.6 Formulations of Poisson's equation
 4.7 Well-posedness
 4.8 Hodge Laplacian in \mathbb{R}^3
 4.9 Boundary conditions
5. Approximation of Hilbert complexes [3-4 lectures]
 5.1 Galerkin discretization of the primal problem
 5.2 Mixed Galerkin discretization
 5.3 Properties of subspaces
 5.4 Consistency, stability, convergence
6. L^2 differential forms [2 lectures]
7. Finite element differential forms [4-5 lectures]
 7.1 Polynomial differential forms $\mathcal{P}_r^- \Lambda^k$ and $\mathcal{P}_r^+ \Lambda^k$
 7.2 Koszul complex
 7.3 Decompositions of $\mathcal{P}_r^- \Lambda^k$ and $\mathcal{P}_r^+ \Lambda^k$
 7.4 Shape functions and degrees of freedom
 7.5 Properties of the finite element spaces
 7.6 Whitney forms ($\mathcal{P}_r^- \Lambda^k$ spaces)