For any polynomial \(F(x) \), let \(\bar{F} \) denote the reduction (to the least nonnegative residue) \(\mod 3 \).

Question: If \(F(x) = (1 + x)^n \), find \(\bar{F}(1) \).

Write \(n = \sum_{j=1}^{J} a_j e^j \)

Let \(A = \{ j : a_j = 1 \} \); \(B = \{ j : a_j = 2 \} \)

\(|A| = a; \quad |B| = b. \)

Let \(G(x) = \prod_{j=1}^{J} (1 + x^{3^j})^{a_j} \)

Since \((1 + x)^3 \equiv 1 + x^{3^j} \mod 3 \), we have \(G(x) \equiv F(x) \mod 3 \).

Hence the problem reduces to finding \(\bar{G}(1) \). The advantage in \(G \) is that there is no carry over, that is every monomial in the product occurs exactly once.

Now, \(G(x) = \prod_{j \in B} (1 + 2x^{3^j} + x^{2 \cdot 3^j}) \prod_{j \in A} (1 + x^{3^j}) = \sum b_j x^j \)

Let \(R = |\{ j : b_j \equiv 2 \mod 3 \}| \)

\(S = \{ j : b_j \equiv 1 \mod 3 \} \)

so that \(\bar{G}(1) = S + 2R. \)

From the expansion of \(G(x) \), it is clear that if each non zero \(b_j \), is replaced by \(1 \), we get

\[
H(x) = \prod_{j \in B} (1 + x^{3^j} + x^{2 \cdot 3^j}) \prod_{j \in A} (1 + x^{3^j})
\]

and hence \(R + S = H(1) = 3^b 2^a. \)

Also if we replace \(b_j \) by \((-1)\) for \(j \in R \), and \(b_j \) by \((+1)\) for \(j \in S \), we end up with

\[
\prod_{j \in B} (1 - x^{3^j} + x^{2 \cdot 3^j}) \prod_{j \in A} (1 + x^{3^j})
\]

and hence \(S - R = 2^a. \)

Thus \(S = 2^{a-1}(3^b + 1) \) and \(R = 2^{a-1}(3^b - 1) \).

Hence \(\bar{G}(1) = S + 2R = 2^{a-1}(3^{b+1} - 1). \)