Problem 1, UI Freshman Math Contest 2012. Determine, with proof, whether there exists a power of 2 whose decimal representation ends in the digits 2012.

Problem 1, UI Freshman Math Contest 2011. Let x be the number whose decimal expansion consists of the sequence of natural numbers written next to each other, i.e., $x = 0.1234567891011121314\ldots$.

(a) Determine the 2011th digit after the decimal point of x.
(b) Prove that x is irrational.

Problem A1, Putnam 2012. Let d_1, d_2, \ldots, d_{12} be 12 real numbers in the open interval $(1, 12)$. Show that there exist distinct indices i, j, k such that d_i, d_j, d_k are the side lengths of an acute triangle.

Problem 5, UI Mock Putnam Exam 2008. Let a_1, a_2, \ldots, a_{65} be 65 positive integers, none of which has a prime factor greater than 13. Prove that, for some i, j with $i \neq j$, the product $a_i a_j$ is a perfect square.

Problem 6, UI Undergraduate Math Contest 2012. Call a positive integer defective if its decimal representation does not contain all ten digits 0, 1, 2, \ldots, 9. Thus, for example, the number 3141592653589 is defective (since it does not contain the digits 7 and 0), but the number 3141592653589793238462433832795028 is not defective (since it contains each of the digits 0, 1, \ldots, 9). Let D denote the set of defective numbers. Determine, with proof, whether the sum of reciprocals of the numbers in D converges or diverges.