Elementary Problems

E1 Evaluate \(f(n) = 1^2 - 2^2 + 3^2 - \cdots + (2n - 1)^2 - (2n)^2. \)

E2 Show that, if \(n \) is odd, then \(1^n + 2^n + \cdots + n^n \) is divisible by \(n^2 \).

E3 Let \(a_1 = 1, a_2 = 1, a_3 = -1 \), and for \(n > 3 \) define \(a_n \) by \(a_n = a_{n-1}a_{n-3} \). Find \(a_{2001} \).

E4 Evaluate the sum \(\sum_{k=0}^{n} \binom{n}{k}^2 (-1)^k \).

Advanced Problems

A1 Let \(n \) and \(m \) be positive integers with \(n \geq 2m \). How many binary strings of length \(n \) are there that contain exactly \(m \) blocks of the form 01?

A2 Let \(H_n = \sum_{k=1}^{n} \frac{1}{k} \). Show that \(\lim_{n \to \infty} (H_n - \log n) = 1 - \int_0^1 \{ \frac{1}{x} \} \, dx \), where \(\{ y \} \) denotes the fractional part of \(y \).

A3 Let \(a_1 = \sqrt{2} \), and for \(n > 1 \) define \(a_n \) by \(a_n = (\sqrt{2})^{a_{n-1}} \). Prove that the sequence \(\{a_n\} \) converges and determine its limit.

A4 Find all polynomials \(P(x) \), all of whose roots are real and which satisfy (*) \(P(x^2 - 1) = P(x)P(-x) \) for all \(x \).