1. (Virginia Tech Math Contest, 1995) Evaluate the integral
\[\int_0^1 \int_0^1 \frac{1}{1 + \max(x, y)^2} \, dx \, dy, \]
where
\[\max(x, y) = \begin{cases} x & \text{if } x \geq y, \\ y & \text{if } x < y. \end{cases} \]

2. Call a permutation \(a_1, a_2, \ldots, a_n \) of the integers 1, 2, \ldots, \(n \) a polynomial permutation of 1, 2, \ldots, \(n \) if there exists a polynomial \(P(x) \) with integer coefficients such that \(P(k) = a_k \) for \(k = 1, 2, \ldots, n \). Obviously, the identity permutation 1, 2, \ldots, \(n \) is always a polynomial permutation, corresponding to the polynomial \(P(x) = x \).

(a) Find, with proof, a non-trivial polynomial permutation (i.e., one that is not the identity permutation) of 1, 2, \ldots, 2017.

(b) For general \(n \) determine, with proof, all polynomial permutations of 1, 2, \ldots, \(n \).

3. (A2, Putnam 2001) You have coins \(C_1, C_2, \ldots, C_n \). For each \(k \), \(C_k \) is biased so that, when tossed, it has probability \(1/(2k+1) \) of falling heads. Let \(P_n \) be the probability that the number of heads is odd if all \(n \) coins are tossed. Find, with proof, a simple general formula for \(P_n \).

4. Given a real number \(\alpha \) with \(0 < \alpha < 1 \), let
\[I_\alpha = \int_0^\infty \frac{dx}{x^\alpha (1 + x)}. \]
Determine, with proof, the value of \(\alpha \) for which the integral \(I_\alpha \) is minimal.

5. Let \(a, b \) be real numbers, and define a function \(f(x) \) by
\[f(x) = \begin{cases} a & \text{if } |x| \text{ is odd}, \\ b & \text{if } |x| \text{ is even}, \end{cases} \]
where \(|x| \) denotes the greatest integer \(\leq x \). Find, with proof, the exact value of the series
\[\sum_{n=1}^\infty \frac{f(2^n \pi)}{2^n} \]
and express the result as a simple function of \(a \) and \(b \).

6. For \(d = 1, \ldots, 9 \), let \(A_d \) denote the set of positive integers whose decimal representation contains only digits that are \(\leq d \). For example, the number 310113 is in \(A_3 \) (and also in \(A_d \) for any \(d \geq 3 \)) since all of its digits are \(\leq 3 \).

For each \(d \in \{1, 2, \ldots, 9\} \), determine, with proof, the precise set of positive real numbers \(p \) for which the series
\[\sum_{n \in A_d} \frac{1}{n^p} \]
converges.