1. Prove that, given any power of 2 (such as 1024), there exist infinitely many powers of 2 whose decimal representation ends with the digits of the given power of 2.

2. Determine, with proof, all positive integers \(n \) for which there is a polynomial of degree \(n \) satisfying the following three conditions:
 (i) \(P(k) = k \) for \(k = 1, 2, \ldots, n \);
 (ii) \(P(0) \) is an integer;
 (iii) \(P(-1) = 2012 \).

3. Given positive integers \(n \) and \(m \) with \(n \geq 2m \), let \(f(n, m) \) be the number of binary sequences of length \(n \) (i.e., strings \(a_1a_2\ldots a_n \) with each \(a_i \) either 0 or 1) that contain the block 01 exactly \(m \) times. For example, the sequence 10(01)11(01)0(01) contains this block 3 times.

 Find, with proof, a simple formula for \(f(n, m) \).

4. Let \(x_0 = 0, \ x_1 = 1, \) and
\[
x_{n+1} = \frac{1}{n+1} x_n + \left(1 - \frac{1}{n+1} \right) x_{n-1} \quad (n \geq 1).
\]
Show that the sequence \(\{x_n\} \) converges as \(n \to \infty \) and determine its limit.

5. [A4, Putnam 1998] Let \(A_1 = 0, \ A_2 = 1, \) and for \(n > 2 \) define \(A_n \) as the number obtained by concatenating the numbers \(A_{n-1} \) and \(A_{n-2} \) (written in decimal). Thus, \(A_3 = A_2A_1 = \boxed{10} = 10, \ A_4 = A_3A_2 = \boxed{101} = 101, \ A_5 = A_4A_3 = \boxed{10110} = 10110, \) and so on.

 Determine, with proof, the set of \(n \) for which \(A_n \) is divisible by 11.

6. [B4, Putnam 1988] Let \(a_1, a_2, a_3, \ldots \) be a sequence of positive real numbers, and let \(A_n = \sqrt[n]{a_n} \). Prove that if the series \(\sum_{n=1}^{\infty} \frac{1}{a_n} \) converges, then so does the series \(\sum_{n=1}^{\infty} \frac{A_n}{a_n} \).

[Solutions at http://www.math.uiuc.edu/contests.html]