Problem 1. Determine all prime numbers in the sequence 101, 10101, 1010101, \ldots.

Problem 2. Let \(b \) be a positive real number such that
\[
1 + 2b + 3b^2 + \cdots + nb^{n-1} + \cdots = 2002.
\]
Which number is larger: \(4004b \) or \(2002b^2 + 2001 \)?

Problem 3. Find a polynomial \(f(x) \) with real coefficients, of degree \(\leq 2 \), which best approximates \(\sin x \) on the interval \([-\frac{\pi}{2}, \frac{\pi}{2}]\), in the sense that the integral
\[
I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (f(x) - \sin x)^2 \, dx
\]
is as small as possible.

Problem 4. Let \(a_1, a_2, \ldots, a_{2n+1} \) be integers with the property that if we remove any one of these numbers, we can divide the remaining \(2n \) numbers into two groups of \(n \) numbers each, having the same sum. Show that \(a_1 = a_2 = \cdots = a_{2n+1} \).