1. Let

\[S(n) = \sum_{k=1}^{n} \frac{1}{\langle \sqrt{k} \rangle}, \]

where \(\langle x \rangle \) denotes the integer closest to \(x \), with the convention that when \(x \) is exactly between two integers, then \(x \) is rounded up instead of down. Thus, for example, \(\langle 1.73 \rangle = 2 \), \(\langle 2.5 \rangle = 3 \), and \(\langle 3.14159 \rangle = 3 \).

Find and prove a general formula for \(S(m^2) \), where \(m \) is a positive integer.

2. Let \(S = \{1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, \ldots \} \) be the set of integers of the form \(2^a 3^b \), where \(a, b \) are nonnegative integers. Prove that, given any 5 distinct integers in \(S \), there exist two of these 5 integers whose product is a square. For example, if the five integers are 2, 3, 6, 8, 36, then \(2 \cdot 8 \) is a square.

3. Let \(P(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + 1 \) be a polynomial of degree \(n \geq 2 \) such that the coefficients \(a_1, \ldots, a_{n-1} \) are positive real numbers and all roots of \(P(x) \) are real (they may be repeated).
 (a) Prove that \(P(2) \geq 3^n \).
 (b) For each integer \(n \geq 2 \) find a polynomial \(P_n(x) \) of the above form that achieves this lower bound, i.e., satisfies \(P_n(2) = 3^n \).

4. A computer generates three random real numbers, \(x, y, z \), in the interval \([0, 1]\), then computes the sum of these numbers, \(s = x + y + z \), and outputs \(\langle s \rangle \), the integer that is closest to \(s \) (with the convention that numbers that lie exactly between two integers will be rounded up). Thus, the output, \(\langle s \rangle \), will be of the four numbers 0, 1, 2, and 3. Find, with proof, the probability that \(\langle s \rangle = 1 \).

5. Find, with proof, all positive rational solutions of the equation

\[(x + y)^y = x^{x+y}. \]