1. Let \(N \) be the number

\[
N = 1234567891011121314\ldots99100
\]

obtained by writing the integers 1, 2, 3, 4, \ldots, 99, 100 next to each other. What is the remainder of \(N \) when divided by 9? Explain!

Solution. We will show that the remainder is 1.

By the divisibility test for 9, we have \(N \equiv s(N) \mod 9 \), where \(s(N) \) the sum of digits of \(N \) modulo 9. Now,

\[
s(N) = \sum_{k=1}^{100} s(k) \equiv \sum_{k=1}^{100} k = 50 \cdot 101 \equiv 5 \cdot 2 \equiv 1 \mod 9,
\]

so \(N \equiv 1 \mod 9 \).

2. Prove that the equation

\[x^2 + y^2 + z^2 = 2xyz \]

has no solution in positive integers \(x, y, z \).

Solution. We argue by contradiction. Assume the equation \(x^2 + y^2 + z^2 = 2xyz \) has a solution in positive integers \(x, y, z \). Let \(2^k \) be the highest power of 2 dividing all of \(x, y, z \), and set \(x_1 = x/2^k \), \(y_1 = y/2^k \), \(z_1 = z/2^k \).

Then at least one of \(x_1, y_1, z_1 \) is odd. Dividing the given equation by \((2^k)^2 \), we get

\[x_1^2 + y_1^2 + z_1^2 = 2 \cdot 2^k x_1 y_1 z_1. \]

(*) Now consider congruences modulo 4 in (*). Since, for any integer \(n \), \(n^2 \equiv 0 \mod 4 \) if \(n \) is even, and \(n^2 \equiv 1 \mod 4 \) if \(n \) is odd, we have for the left side of (*):

1. \(x_1^2 + y_1^2 + z_1^2 \equiv 1 \mod 4 \) if one of the integers \(x_1, y_1, z_1 \) is odd and two are even;
2. \(x_1^2 + y_1^2 + z_1^2 \equiv 2 \mod 4 \) if two of the integers \(x_1, y_1, z_1 \) are odd and one is even;
3. \(x_1^2 + y_1^2 + z_1^2 \equiv 3 \mod 4 \) if all three of the integers \(x_1, y_1, z_1 \) are odd.

On the other hand, in cases (1) and (2) the right side of (*) is divisible by 4, hence congruent to 0 modulo 4, and in case (3) the right side is divisible by (at least) 2 and hence congruent to 0 or 2 modulo 4. Thus, in either case we have a contradiction, and the proof is complete.

3. Let \(x, y, z \) be arbitrary real numbers in the interval \([0, 1]\), and let \(u = x(1 - y), v = y(1 - z), w = z(1 - x) \). Prove that at least one of the numbers \(u, v, w \) is \(\leq 1/4 \).

Solution. Consider the product (*) \(uvw = (x(1-x))(y(1-y))(z(1-z)) \). Note that the function \(f(t) = t(1-t) \) satisfies \(f'(t) > 0 \) if \(t < 1/2 \), \(f'(t) < 0 \) if \(t > 1/2 \), and thus has a unique maximum at \(t = 1/2 \), with value \(f(1/2) = 1/4 \). Hence each of the three factors on the right-hand side of (*) is \(\leq 1/4 \). Therefore at least one of the three factors \(u, v, w \) on the left must be \(\leq 1/4 \). This is what we had to prove.

4. Prove that, given any 9 pairwise distinct lattice points, \(P_1, \ldots, P_9 \), in 3-dimensional space, there exist two of these points, say \(P_i \) and \(P_j \) with \(i \neq j \), such that the line segment \(P_iP_j \) contains another lattice point (different from \(P_i \) and \(P_j \)). (A lattice point is a point with integer coordinates.)
6. Let \(P \) be an arbitrary real number, and let the sequence \(x_n \) be defined by \(x_0 = a, x_1 = b, \) and
\[
x_n = \frac{1}{2} \left(x_{n-1} + x_{n-2} \right) \quad (n = 2, 3, \ldots).
\]
Prove that as \(n \to \infty \), \(x_n \) converges to a limit, and find a formula for this limit in terms of \(a \) and \(b \).

Solution. We will show that \((*)\) \(\lim_{n \to \infty} x_n = (1/3)a + (2/3)b \). For the proof, rewrite the given recurrence as
\[
x_n - x_{n-1} = -\frac{1}{2} (x_{n-1} - x_{n-2}).
\]
Iterating this relation, we get
\[
x_n - x_{n-1} = \left(-\frac{1}{2} \right)^{n-1} (x_1 - x_0) = \left(-\frac{1}{2} \right)^{n-1} (b - a)
\]
for \(n \geq 1 \). It follows that
\[
x_n = x_0 + \sum_{k=1}^{n} (x_k - x_{k-1}) = a + (b - a) \sum_{k=1}^{n} (-1/2)^{k-1} = a + (b - a) \frac{1 - (-1/2)^n}{1 - (-1/2)}
\]
As \(n \to \infty \), the right side converges, with limit \(a + (b - a)(2/3) = (1/3)a + (2/3)b \). This proves \((*)\).