1. (AIME 1988) For any positive integer \(k \), let \(f(k) \) denote the sum of the squares of the digits of \(k \) (expressed in decimal), and let \(f_n \) denote the \(n \)-th iterate of \(f \), defined by \(f_1(k) = f(k) \) and \(f_n(k) = f(f_{n-1}(k)) \) for \(n = 2, 3, \ldots \). (For example, \(f_1(2014) = f(2014) = 2^2 + 0^2 + 1^2 + 4^2 = 21 \), \(f_2(2014) = f(f_1(2014) = f(21) = 2^2 + 1^1 = 5 \).) Find, with proof, \(f_{2014}(11) \).

2. (A1, Putnam 2003) For any positive integer \(n \), let \(f(n) \) be the number of ways to write \(n \) as a sum of positive integers, \(n = a_1 + a_2 + \cdots + a_k \), with \(k \) an arbitrary positive integer and \(a_1 \leq a_2 \leq \cdots \leq a_k \leq a_1 + 1 \). For example, with \(n = 4 \) there are four such representations, \(4 = 4 \), \(4 = 2 + 2 \), \(4 = 1 + 1 + 2 \), \(4 = 1 + 1 + 1 + 1 \), so \(f(4) = 4 \). Find, with proof, a general formula for \(f(n) \).

3. Let \(x_1, x_2, \ldots, x_n \) be real numbers satisfying \(0 \leq x_i \leq 1 \) for each \(i \). Prove that
\[
(1 + x_1)(1 + x_2)\ldots(1 + x_n) \leq 2^{n-1}(1 + x_1 x_2 \ldots x_n).
\]

4. The harmonic mean of two numbers \(x \) and \(y \) is defined as \(H(x, y) = 2/(1/x + 1/y) \); for example, \(H(2, 6) = 2/(1/2 + 1/6) = 3 \). Prove that any odd prime number \(p \geq 3 \) can be expressed as the harmonic mean of a unique pair of positive integers \((x, y) \) with \(x < y \).

5. (Variation of A3, Putnam 2009) Evaluate the determinant
\[
\begin{vmatrix}
\cos 1 & \cos 2 & \cos 3 \\
\cos 4 & \cos 5 & \cos 6 \\
\cos 7 & \cos 8 & \cos 9 \\
\end{vmatrix}
\]
(The argument of \(\cos \) is in radians, not degrees.)

6. (B3, Putnam 1993) For any real number \(t \), let \(\langle t \rangle \) denote the integer closest to \(t \); for example, \(\langle 3.14159 \rangle = 3 \) and \(\langle 2.71828 \rangle = 3 \). If \(x \) and \(y \) are chosen at random in the interval \((0, 1)\), what is the probability that the number \(\langle x/y \rangle \) is even? Justify your reasoning, and express your answer in the form \(r + sc \), where \(r \) and \(s \) are rational numbers and \(c \) is a famous constant.

[Solutions at http://www.math.uiuc.edu/contests.html]