1. Determine, with proof, whether there exists a power of 2 whose decimal representation ends in the digits 2012.

Solution. The answer is no. To see this, note that a number ending in 2012 must be of the form \(10000k + 2012 = 4(2500k + 503)\) for some nonnegative integer \(k\). Since \(2500k + 503\) is odd, such a number must have an odd prime factor and therefore cannot be equal to a power of 2.

2. [A1, Putnam 1985] Determine, with proof, the number of ordered triples \((A_1, A_2, A_3)\) of subsets of \(\{1, 2, \ldots, 2012\}\) with the following properties:

(i) Each of the integers \(1, 2, \ldots, 2012\) belongs to at least one of the sets \(A_1, A_2, A_3\).

Solution. Encode the memberships of an element in \(\{1, 2, \ldots, 2012\}\) as a triple \((a_1, a_2, a_3)\) with \(a_i = 1\) if the integer belongs to \(A_i\), and 0 otherwise. For each such element there are 6 such encodings that satisfy the constraints (i) and (ii): \((1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 0, 1)\). Since there are 2012 elements, the total number of possible encodings, and hence the total number of set triples \((A_1, A_2, A_3)\) satisfying (i) and (ii), is \(6^{2012}\).

3. Prove that 2012 can be represented in the form

\[2012 = \pm 1^2 \pm 2^2 \pm 3^2 \pm \cdots \pm m^2\]

for some positive integer \(m\) and a suitable choice of the \(\pm\) signs. (For example, \(4 = -1^2 - 2^2 + 3^2\) is a representations of the required form for the number 4 with \(m = 3\) and \(-, -, +\) as the sequence of \(\pm\) signs. Note that each of the squares \(1^2, 2^2, 3^2, \ldots, m^2\) must be used in this representation.)

Solution. Note that, for any positive integer \(k\), \(k^2 - (k+1)^2 - (k+2)^2 + (k+3)^2 = 4\). Applying this with \(k = 1 + 4h\), where \(h = 0, 1, 2, \ldots, 502\), we get

\[
\sum_{h=0}^{502} \left((4h + 1)^2 - (4h + 2)^2 - (4h + 3)^2 + (4h + 4)^2 \right) = \sum_{h=0}^{502} 4 = 503 \cdot 4 = 2012.
\]

This gives a representation of the desired form for 2012.

4. Evaluate the integral

\[
\int_{\frac{2}{7}}^{1} \frac{\sqrt{\ln(9 - x)}}{\sqrt{\ln(9 - x) + \sqrt{\ln(x + 3)}}} \, dx
\]

(Hint: No special integration techniques needed!)

Solution. We exploit the symmetry of the integrand about \(x = 3\). Let \(f(x)\) denote the integrand. Then it is easily checked that \(f(3 - y) = 1 - f(3 + y)\). Hence, making the change of variables \(x = 3 + y\), the integral becomes

\[
\int_{-1}^{0} (f(3 + y)dy = \int_{0}^{1} f(3 - y) + f(3 + y))dy = \int_{0}^{1} 1dy = 1.
\]

5. Suppose each point in the plane is colored either orange or blue. Define \(D_O\), the set of “orange distances”, as the set of positive real numbers \(d\) for which there exist two orange-colored points whose distance is exactly \(d\), and let \(D_B\), the set of “blue distances”, be defined analogously with respect to blue-colored points. Prove that at least one of the two sets \(D_O\) and \(D_B\) contains all positive real numbers.

Solution. Suppose, to the contrary, that there exist positive distances \(d_O\) and \(d_B\) such that no two orange points have distance \(d_O\) and no two blue points have distance \(d_B\). Without loss of generality, we may assume \(d_O \leq d_B\). Our assumption implies, in particular, that there exists at least one blue point, say \(B\). Now draw a circle of radius \(d_B\) around \(B\). Since no two blue points have distance \(d_B\), every point on the circle must be colored orange. Since \(d_O \leq d_B\), there exist two points on the circle that are distance \(d_O\) apart. This contradicts the assumption that no two orange points have distance \(d_O\). Hence, at least one of the two colors contains pairs of points at every distance.
6. [A2, Putnam 1986] Determine, with proof, the rightmost digit (in decimal) of \(\left\lfloor \frac{10^{20000}}{10^{100} + 3} \right\rfloor \) (where \([x]\) denotes the largest integer \(\leq x\)).

Solution. Let \(x \) denote the number in brackets. Writing \(x \) as \(10^{19.900}(1 + r)^{-1} \), with \(r = 3 \cdot 10^{-100} \) and expanding \((1 + r)^{-1}\) into a geometric series we get

\[
x = 10^{19.900} \sum_{n=0}^{\infty} (-r)^n = \sum_{n=0}^{\infty} (-1)^n 3^n 10^{19.900 - 100n}.
\]

In the last sum, all terms with \(n < 199 \) are all divisible by 10 and the term \(n = 199 \) equals \((-3)^{199}\). Also, since the series is alternating with decreasing terms, the sum over the remaining terms (i.e., those with \(n \geq 200 \)) is positive and bounded from above by the first of these terms, i.e., \(3^{200} 10^{-100} = (9/10)^{100} \), which is less than 1. Thus, \([x] = 10k + N\), where \(k \) is an integer and \(N = (-3)^{199} \). Hence the rightmost digit of \([x]\) is equal to the rightmost digit of \(10k + N\), which in turn is equal to the remainder of \(N\) modulo 10. Since \((-3)^4 = 81 \equiv 1 \) modulo 10, we have \(N = (-3)^{199} = -27 \cdot 81^{49} \equiv -27 \equiv 3 \) modulo 10. Therefore the rightmost digit of \([x]\) is \(3\).