1996 UIUC UNDERGRAD MATH CONTEST

Problem 1. Let \(a_1 < a_2 < \cdots < a_{43} < a_{44} \) be positive integers not exceeding 125. Prove that among the 43 differences \(d_i = a_{i+1} - a_i \) \((i = 1, 2, \ldots, 43) \) some value must occur at least 10 times.

Problem 2. Suppose \(f \) is a real positive continuous function on \(\mathbb{R} \) with \(\int_{-\infty}^{\infty} f(x)dx = 1 \). Let \(0 < \alpha < 1 \), and suppose \([a, b] \) is an interval of minimal length with \(\int_a^b f(x)dx = \alpha \). Show that \(f(a) = f(b) \).

Problem 3. Evaluate the infinite product \(\prod_{k=1}^{\infty} \cos(x2^{-k}) \). (Hint: \(\sin 2\alpha = 2 \sin \alpha \cos \alpha \).)

Problem 4. Let \(S = \{0000000, 0000001, \ldots, 1111111\} \) be the set of all binary sequences of length 7. The **distance** of two elements \(s_1, s_2 \in S \) is the number of places in which \(s_1 \) and \(s_2 \) differ. For example, 0001011 and 1001010 have distance 2, since they differ in positions 1 and 7. Show that if \(T \) is a subset of \(S \) having more than 16 elements then \(T \) contains two elements whose distance is at most 2.

Problem 5. Let \(a, b, c \) be real numbers \(> 1 \), and let

\[
S = \log_a bc + \log_b ca + \log_c ab,
\]

where \(\log_b x \) denotes the base \(b \) logarithm of \(x \). Find, with proof, the smallest possible value of \(S \).

Problem 6. Suppose \(0 \leq s < 1, \alpha, \beta > 0 \), and \(\lfloor \alpha \rfloor > \lfloor \beta \rfloor \). Let \(\psi(\alpha, \beta; s) \) be the least positive integer \(n \) such that \(\lfloor n\alpha + s \rfloor \neq \lfloor n\beta + s \rfloor \). Find an explicit formula for \(\psi(\alpha, \beta; s) \) using the floor and ceiling functions. (The floor function \(\lfloor x \rfloor \) denotes greatest integer \(\leq x \) and the ceiling function \(\lceil x \rceil \) denotes the least integer \(\geq x \).)