1. Let
\[f(n) = (1^2 + 1)1! + (2^2 + 1)2! + \cdots + (n^2 + 1)n! . \]
Find a simple general formula for \(f(n) \).

2. Prove that for every odd integer \(n \) the sum \(1^n + 2^n + \cdots + n^n \) is divisible by \(n^2 \).

3. For any positive integer \(k \) let \(f_1(k) \) denote the sum of the squares of the digits of \(k \) (when written in decimal), and for \(n \geq 2 \) define \(f_n(k) \) iteratively by \(f_n(k) = f_1(f_{n-1}(k)) \). Find \(f_{2007}(2006) \).

4. Determine, with proof, whether the series
\[\sum_{n=1}^{\infty} \left(e - \left(1 + \frac{1}{n} \right)^n \right) \]
converges.

5. Suppose \(P_1, \ldots, P_{12} \) are points on the unit circle \(x^2 + y^2 = 1 \), and let
\[S = S(P_1, \ldots, P_{12}) = \sum_{1 \leq i < j \leq 12} |P_iP_j|^2 , \]
where \(|P_iP_j| \) denotes the distance between \(P_i \) and \(P_j \). In other words, \(S \) is the sum of the squares of the pairwise distances between the points \(P_1, \ldots, P_{12} \). Determine, with proof, the largest possible value of \(S \) among all choices of the points \(P_1, \ldots, P_{12} \) on the unit circle.

6. Let \(a_n \) (\(n = 0, 1, \ldots \)) be a bounded sequence of positive integers that satisfies
\[a_n \left(a_{n-1}^2 + a_{n-2}^2 + \cdots + a_{n-2007}^2 \right) = a_{n-1}^3 a_{n-2} + a_{n-2} a_{n-2}^2 + \cdots + a_{n-2007}^3 a_{2007} \quad (n \geq 2007) . \]
Show that the sequence eventually becomes periodic.

[Solutions at http://www.math.uiuc.edu/contests.html]