Problem 1

Given a positive integer \(n \), let \(n_1 \) be the sum of digits (in decimal) of \(n \), \(n_2 \) the sum of digits of \(n_1 \), \(n_3 \) the sum of digits of \(n_2 \), etc. The sequence \(\{n_i\} \) eventually becomes constant, and equal to a single digit number. Call this number \(f(n) \). For example, \(f(1999) = 1 \) since for \(n = 1999 \), \(n_1 = 28 \), \(n_2 = 10 \), \(n_3 = n_4 = \cdots = 1 \). How many positive integers \(n \leq 2001 \) are there for which \(f(n) = 9 \)?

Solution. Since an integer is divisible by 9 if and only if its sum of digits is divisible by 9, the numbers \(n \) with \(f(n) = 9 \) are exactly the multiples of 9. Since \(2001 = 9 \cdot 222 + 3 \), there are 222 such numbers below 2001.

Problem 2

Let \(x, y, \) and \(z \) be nonzero real numbers satisfying

\[
\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{x+y+z}.
\]

Show that \(x^n + y^n + z^n = (x+y+z)^n \) for any odd integer \(n \).

Solution. From the given relation one obtains, after clearing denominators and simplifying, \((x+y)(x+z)(y+z) = 0\). Hence \(x = -y, x = -z, \) or \(y = -z \). In the first case, \(x^n + y^n = 0 \) for odd \(n \), and so \(x^n + y^n + z^n = (x+y+z)^n \). The other cases are analogous.

Problem 3

Suppose that an equilateral triangle is given in the plane, with none of its sides vertical. Let \(m_1, m_2, m_3 \) denote the slopes of the three sides. Show that

\[
m_1m_2 + m_2m_3 + m_3m_1 = -3.
\]

Solution. Let \(A, B, \) and \(C \) be the vertices of the triangle, labelled so that the path \(ABCA \) is counter-clockwise, and let \(m_1, m_2, m_3 \) denote the slopes of the three sides \(AB, BC, \) and \(AC, \) respectively. Without loss of generality, we may assume that the vertex \(A \) is located at the origin. Then \(m_1 = \tan \theta, m_2 = \tan(\theta + 2\pi/3), \) and \(m_3 = \tan(\theta + \pi/3), \) where \(\theta \) is the angle between the positive \(x \) axis and \(AB \). (Note that \(\theta \geq 0 \) if the triangle lies entirely in the first quadrant; \(\theta < 0 \) if the triangle extends into the fourth quadrant.) Using the identity \(\tan(x + y) = (\tan x + \tan y)/(1 - \tan x \tan y) \), we get, with \(T = \tan \theta, \)

\[
m_1m_2 = \frac{T(T - \sqrt{3})}{1 + T\sqrt{3}}, \quad m_2m_3 = \frac{(T - \sqrt{3})(T + \sqrt{3})}{1 - T\sqrt{3}}, \quad m_3m_1 = \frac{T(T + \sqrt{3})}{1 - T\sqrt{3}}.
\]
Adding these three terms and simplifying gives \(m_1 m_2 + m_2 m_3 + m_3 m_1 = -3 \), independently of the value of \(T \) (and \(\theta \)).

Problem 4

Let \(x_1 \geq x_2 \geq \cdots \geq x_n > 0 \) be real numbers. Prove that

\[
\frac{x_1}{x_2} + \frac{x_2}{x_3} + \cdots + \frac{x_{n-1}}{x_n} + \frac{x_n}{x_1} \leq \frac{x_2}{x_1} + \frac{x_3}{x_2} + \cdots + \frac{x_n}{x_{n-1}} + \frac{x_1}{x_n}.
\]

Solution. Set \(q_i = x_i/x_{i+1} \). Then \(x_1/x_n = \prod_{i=1}^{n-1} q_i \), so the inequality to be proved can be written as

\[
\sum_{i=1}^{n-1} q_i + \prod_{i=1}^{n-1} \frac{1}{q_i} \leq \sum_{i=1}^{n-1} \frac{1}{q_i} + \prod_{i=1}^{n-1} q_i,
\]

or equivalently

\[
(*) \quad \sum_{i=1}^{n-1} \left(q_i - \frac{1}{q_i} \right) - \prod_{i=1}^{n-1} q_i + \prod_{i=1}^{n-1} \frac{1}{q_i} \leq 0.
\]

Let \(f(q_1, \ldots, q_{n-1}) \) denote the function on the left of \((*)\). The hypothesis that the \(x_i \) are non-increasing implies that \(q_i \geq 1 \) for all \(i \). Since \(f(1, \ldots, 1) = 0 \), to prove \((*)\) it therefore suffices to show that the partial derivatives of \(f \) are \(\leq 0 \) when \(q_i \geq 1 \) for all \(i \). This is indeed the case: we have

\[
\frac{\partial f}{\partial q_i} = 1 + \frac{1}{q_i^2} - \prod_{j \neq i} q_j - \frac{1}{q_i^2} \prod_{j \neq i} q_j
\]

\[
= \left(1 + \frac{1}{q_i^2} \right) \left(1 - \prod_{j \neq i} q_j \right) \leq 0,
\]

since \(\prod_{j \neq i} q_j \geq 1 \). (When \(n = 2 \), this last product is empty, but in that case the sums and products on the left of \((*)\) reduce to a single term (corresponding to \(i = 1 \)), and a direct computation shows that the derivative of \(f \) with respect to \(q_1 \) is equal to zero, so the last inequality remains valid for this case.)

Problem 5

Suppose that \(q(x) \) is a polynomial satisfying the differential equation

\[
7 \frac{d}{dx} \{ xq(x) \} = 3q(x) + 4q(x + 1), \quad -\infty < x < \infty.
\]

Show that \(q(x) \) is necessarily a constant.
Solution. The left-hand side of the given equation is $7xq'(x) + 7q(x)$, so the equation simplifies to

\[(*) \quad 7xq'(x) = -4q(x) + 4q(x + 1) = 4 \int_x^{x+1} q'(t)dt.\]

The left-hand side of (*) is zero at $x = 0$, so by the mean value theorem for integrals (which can be applied here since $q(x)$ is a polynomial and hence has continuous derivatives of all orders) there exists a number $x_1 \in (0,1)$ with $q'(x_1) = 0$. Setting $x = x_1$ in (*), we obtain a number $x_2 \in (x_1, x_1 + 1)$ with $q'(x_2) = 0$. Repeating this process, we obtain an infinite sequence $x_1 < x_2 < \cdots$ of values x at which $q'(x) = 0$. Since q' is a polynomial, q' must be identically zero. Hence q is constant.

Alternative solution: The above solution was the one we had in mind when posing the problem. However, all students who correctly solved the problem, did so via the following approach (or a variant of it): Write $q(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0$, where $a_n \neq 0$. Then the left side of the differential equation is a polynomial of degree n with leading term $7a_n(n+1)x^n$, while the right-hand side has leading term $7a_nx^n$. Equating the coefficients of those terms, we obtain $7a_n(n+1) = 7a_n$; since $a_n \neq 0$, this can only hold when $n = 0$, i.e., when $q(x)$ is constant.

Problem 6

Evaluate the sum $\sum_{k=0}^{2n} \binom{k}{n} 2^{-k}$.

Solution. Let $S(n)$ denote the given sum. We claim that $S(n) = 1$ for all n. Since $S(1) = 1$, it suffices to show that $S(n + 1) = S(n)$ for all n. Writing $k = n + 1 + h$ and using the identity $\binom{n+1+h}{n+1} = \binom{n+h}{h} + \binom{n+h}{h-1}$ for $h \geq 1$, we have

\[
2^{n+1}S(n+1) = \sum_{h=0}^{n+1} \binom{n+1+h}{h} 2^{-h} = \sum_{h=0}^{n+1} \binom{n+h}{h} 2^{-h} + \sum_{h=1}^{n+1} \binom{n+h}{h-1} 2^{-h}.
\]

\[
= \sum_{h=0}^{n} \binom{n+h}{h} 2^{-h} + \left(\binom{2n+1}{n+1} - \binom{2n+1}{n} + \sum_{h=0}^{n+1} \binom{n+1+h}{h} 2^{-h-1} - \binom{2n+2}{n+1} 2^{-n-2}\right) 2^{n-1}.
\]

Since $\binom{2n+2}{n+1} = \binom{2n+1}{n+1} + \binom{2n+1}{n}$, the last term is zero, so we have $2^{n+1}S(n+1) = 2^nS(n) + 2^nS(n+1)$, and hence $S(n+1) = S(n)$, as claimed.