Contents

1 Introduction ... 5
 1.1 What is asymptotic analysis? 5
 1.1.1 Combinatorics: Stirling’s formula 6
 1.1.2 Number theory: the \(n \)-th prime 6
 1.1.3 Combinatorics: Harmonic numbers 7
 1.1.4 Number theory: The partition function 7
 1.1.5 Number theory/analysis: The logarithmic integral 7
 1.1.6 Analysis/probability: The error function integral 8
 1.1.7 Analysis: The \(W \)-function 8
 1.1.8 Combinatorics/probability: Sums of binomial coefficients 9
 1.1.9 Analysis: Behavior of Laplace and Fourier transforms ... 9
 1.2 The “oh” notations 9
 1.2.1 Definition of “big oh”, special case 9
 1.2.2 Dependence on parameters 12
 1.2.3 Definition of “big oh”, general case 13
 1.2.4 “Oh” terms in arithmetic expressions 14
 1.2.5 The Vinogradov “\(\ll \)” notation 15
 1.2.6 Other variants of the \(O \)-notation 17
 1.2.7 The “small oh” notation and asymptotic equivalence .. 18
 1.2.8 \(O \)-estimates versus \(o \)-estimates 19
 1.3 Working with the “oh” notations 19
 1.3.1 Rules for “big oh” and “small oh” estimates 20
 1.3.2 Equations involving \(O \)-terms 21
 1.3.3 Some useful techniques 22
 1.3.4 Example: Estimates for the prime counting function 25
 1.3.5 Further examples 28
 1.4 Asymptotic Series 30
 1.4.1 Introduction 30
1.4.2 Definition of an asymptotic series 30
1.4.3 Remarks . 32
1.5 Exercises . 33
Chapter 1

Introduction

1.1 What is asymptotic analysis?

Much of undergraduate mathematics is about exact formulas and identities. For example, in calculus we are taught how to evaluate (in terms of “elementary” functions) integrals of certain classes of functions, such as all rational functions, or powers of trigonometric functions; in discrete mathematics we learn to evaluate (in “closed form”) certain sums (e.g., $\sum_{k=0}^{n} k^2$ or $\sum_{k=0}^{n} \binom{n}{k}^2$); in combinatorics we learn formulas for various combinatorial quantities, such as the total number of subsets of a set; in number theory we learn how to evaluate various number-theoretic functions such as the Euler phi function; and in differential equations we learn how to exactly solve certain types of differential equations.

In the real world, however, the situations where an exact solution or formula exists are the exception rather than the rule. In many problems in analysis, combinatorics, number theory, and other areas, one encounters quantities (functions) that arise naturally and are worth studying, but for which no (simple) exact formula is known, and where it is unreasonable to expect that such a formula exist.\footnote{In some cases it can even be \textit{proved} that no such formula exists. For example, there is a remarkable result (“Risch theorem”) that shows that a certain class of functions cannot be integrated in terms of elementary functions. This class of functions includes the functions $(\log t)^{-1}$ and e^{-t^2} whose integrals define the logarithmic integral, and the error function integral, respectively.}

What one often can do in such cases is to derive so-called asymptotic estimates for these quantities, i.e., approximations of the quantities by “simple” functions, which show how these quantities behave “asymptotically” (i.e.,
when the argument, \(x \) or \(n \), goes to infinity). In applications such approximations are often just as useful as an exact formula would be.

Asymptotic analysis, or “asymptotics”, is concerned with obtaining such asymptotic estimates; it provides an array of tools and techniques that can be helpful for that purpose. In some cases obtaining asymptotic estimates is straightforward, but there are many situations where this can be quite difficult and involve a fair amount of ad-hoc analysis.

We now describe some problems from different areas of mathematics that can be approached by methods of asymptotic analysis and which are representative of the types of problems that are amenable to asymptotic analysis. All of these problems we will consider in detail later in this course.

1.1.1 Combinatorics: Stirling’s formula

Perhaps the most famous asymptotic estimate is “Stirling’s formula” for factorials. In its most basic form it reads\(^2\)

\[
 n! \sim \sqrt{2\pi n} n^ne^{-n}.
\]

A more precise version is

\[
 n! = \sqrt{2\pi n} n^ne^{-n} \left(1 + O\left(\frac{1}{n}\right)\right).
\]

This formula is of great importance in combinatorics (and in other areas) since many combinatorial quantities can be expressed in terms of binomial coefficients, and thus, ultimately, in terms of factorials.

1.1.2 Number theory: the \(n \)-th prime

Because of the erratic nature of the distribution of primes there exists no exact “closed” formula for \(p_n \), the \(n \)-th prime.\(^3\) However, one can derive approximate formulas, or “asymptotic estimates”. For example, we know that \(p_n \) “is asymptotic to” \(n \log n \)

\[
 p_n \sim n \log n,
\]

\(^2\)For precise definitions of the terminology and notations \(\sim \) and \(O \) employed here see the following section.

\(^3\)This assumes a common sense interpretation of the notion of an “exact formula”. There do exist several “formulas” for the \(n \)-th prime (see, e.g., Chapter 3 in Ribenboim [?]), but all of these boil down to tautologies or trivial statements and are void of any real mathematical content.
and, somewhat more precisely that
\[p_n = n \log n + O(n). \]
Such “asymptotic estimates” are less precise than an exact formula, but they still provide useful information about the size of \(p_n \); for instance, the above estimate implies that the series \(\sum_{n=1}^{\infty} 1/p_n \) diverges, while the series \(\sum_{n=1}^{\infty} 1/(p_n \log n) \) converges.

1.1.3 Combinatorics: Harmonic numbers

Harmonic numbers are the partial sums of the harmonic series, \(H_n = \sum_{k=1}^{n} 1/k \). Since the harmonic series diverges, \(H_n \) tends to infinity as \(n \to \infty \). Despite their rather simple definition there is no “closed formula” for these numbers. Thus, the best one can do is to give estimates for \(H_n \). In fact, a classical application of asymptotic analysis gives the estimate
\[H_n = \log n + \gamma + O \left(\frac{1}{n} \right), \]
where \(\gamma = 0.77\ldots \) is the Euler constant.

1.1.4 Number theory: The partition function

The partition function \(p(n) \), which denotes the number of “partitions” of \(n \), i.e., the number of ways to express \(n \) as a sum of positive integers, disregarding order. For example, \(p(4) = 5 \) since 4 has 5 such representations: 4 = 4, 4 = 3 + 1, 4 = 2 + 2, 4 = 2 + 1 + 1, 4 = 1 + 1 + 1 + 1. In contrast to some related combinatorial quantities (e.g., the corresponding counting function when the order is taken into account), there is no simple formula for \(p(n) \), and the behavior of \(p(n) \) as \(n \to \infty \) is a classical and quite difficult problem in number theory. This problem was solved some 100 years ago by G.H. Hardy and S. Ramanujan, who showed, in a remarkable tour de force, the asymptotic formula
\[p(n) \sim \frac{c_1}{n} e^{c_2 \sqrt{n}}, \]
where \(c_1 = 1/(4\sqrt{3}) \) and \(c_2 = \pi\sqrt{2/3} \) are constants.

1.1.5 Number theory/analysis: The logarithmic integral

The function \(\text{Li}(x) = \int_2^x (\log t)^{-1} dt \) is called the logarithmic integral. It arises in number theory as the “best” approximation to the prime counting

Lecture Notes on Asymptotics February 21, 2005
function \(\pi(x) \), the number of primes up to \(x \). However, while \(\text{Li}(x) \), in contrast to the prime counting function, is a smooth function with nice analytic properties such as monotonicity and infinite differentiability, it itself is a bit of a mystery as it cannot be evaluated in terms of elementary functions. Nonetheless, the behavior of \(\text{Li}(x) \) can be described quite well by methods of asymptotic analysis: One has, for example, the simple estimate

\[
\text{Li}(x) = \frac{x}{\log x} + O\left(\frac{x}{(\log x)^2}\right).
\]

In fact, \(\text{Li}(x) \) has a representation in the form of an “asymptotic series” (see below for the precise definition of this concept):

\[
\text{Li}(x) \sim x \sum_{n=1}^{\infty} \frac{(n - 1)!}{(\log x)^n}.
\]

1.1.6 Analysis/probability: The error function integral

The integral \(E(x) = \int_{x}^{\infty} e^{-t^2} dt \) is of importance in probability and statistics, as it represents (up to a constant factor) the tail probability in a normal distribution. As in the case of \(\text{Li}(x) \), the integral representing \(E(x) \) cannot be evaluated exactly, but methods of asymptotic analysis lead to quite accurate approximations to \(E(x) \) in terms of elementary functions, e.g.,

\[
E(x) = \frac{1}{2x} e^{-x^2} \left(1 + O\left(\frac{1}{x}\right) \right).
\]

1.1.7 Analysis: The \(W \)-function

This function is defined via the equation \(We^W = x \), which arises in a variety of contexts. This equation cannot be solved “explicitly” for \(W \), but it is easy to see that, for any positive real number \(x \), the equation has a unique real solution \(W \), and thus defines a function \(W = W(x) \), which has become known as the \(W \)-function. While an exact formula for \(W \) does not exist, one can derive asymptotic estimates for \(W \), for example,

\[
W(x) = \log x - \log \log x + O\left(\frac{\log \log x}{\log x}\right).
\]
1.1.8 Combinatorics/probability: Sums of binomial coefficients

Many combinatorial quantities can be expressed as sums over binomial coefficients, and often such sums have a probabilistic interpretation. For example, the sum \(\sum_{k=a}^{b} \binom{n}{k} \) represents \(2^n \) times the probability that in \(n \) tosses of a fair coin there are between \(a \) and \(b \) heads. Sums like this can rarely be evaluated exactly, so instead one tries obtain good approximations to such sums using methods of asymptotic analysis.

1.1.9 Analysis: Behavior of Laplace and Fourier transforms

Given a function \(f(t) \) defined on the positive real axis, the function \(F(x) = \int_0^\infty f(t)e^{-xt}dt \) (assuming the integral converges) is called the Laplace transform of \(f(t) \). Similarly, if \(f \) is defined on the real line, the Fourier transform of \(f \) is defined as \(\hat{f}(x) = \int_{-\infty}^{\infty} f(t)e^{-itx}dt \) whenever the integral exists. While for some functions \(f(t) \) the integrals representing these transforms can be evaluated exactly, in general there is no such “closed” formula, even if the function \(f(t) \) has a very simple form. In any case, methods of asymptotic analysis can usually be successfully employed to obtain information on the behavior of such transforms (e.g., their rate of decay as \(x \to \infty \) or their rate of growth as \(x \to 0 \)).

1.2 The “oh” notations

A very convenient set of notations in asymptotic analysis are the so-called “big oh” (\(O \)) and “small-oh” (\(o \)) notations, and their variants. These notations are in widespread use and are often used without further explanation. However, in order to properly apply these notations and avoid mistakes resulting from careless use, it is important to be aware of their precise definitions.

In this section we give formal definitions of the “oh” notations and their variants, show how to work with these notations, and illustrate their use with a number of examples. Table 1.1 below gives an overview of these notations.

1.2.1 Definition of “big oh”, special case

We consider first the simplest and most common case encountered in asymptotics, namely the behavior of functions of a real variable \(x \) as \(x \to \infty \). Given
Table 1.1: Overview of asymptotic terminology and notation. In these definitions S denotes a set of real or complex numbers contained in the domain of the functions f and g, and s_0 denotes a (finite) real or complex number of $\pm \infty$.

two such functions $f(x)$ and $g(x)$, defined for all sufficiently large real numbers x, we write

$$f(x) = O(g(x))$$

as short-hand for the following statement: There exist constants x_0 and c such that

$$|f(x)| \leq c|g(x)| \quad (x \geq x_0).$$

If this holds, we say that $f(x)$ is of order $O(g(x))$, and we call the above estimate a **O-estimate** (“big oh estimate”) for $f(x)$. The constant c called the **O-constant**, and the range $x \geq x_0$ the **range of validity** of the O-estimate.

In exactly the same way we define the relation “$f(n) = O(g(n))$” if f and g are functions of an integer variable n.

Note that the O-constant c is not unique; if the above inequality holds with a particular value c, then obviously it also holds with any constant c' satisfying $c' > c$. Similarly, the constant x_0 implicit in the range of an
O-estimate may be replaced by any constant x'_0 satisfying $x'_0 \geq x_0$. The value of the O-constant c is usually not important; all that matters is that such a constant exists. In fact, in many situations it would be quite tedious (though, in principle, possible) to work out an explicit value for c, even if we are not interested in getting the best-possible value. The beauty of the O-notation is that it allows us to express, in a succinct and suggestive manner, the existence of such a constant without having to write down the constant.

Example 1.1. We have

$$x = O(e^x).$$

Proof. By the definition of a O-estimate, we need to show that there exist constants c and x_0 such that $x \leq ce^x$ for all $x \geq x_0$. This is equivalent to showing that the quotient function $q(x) = x/e^x$ is bounded on the interval $[x_0, \infty)$, with a suitable x_0. To see this, observe that the function $q(x)$ is nonnegative and continuous on the interval $[0, \infty)$, equal to 0 at $x = 0$, and tends to 0 as $x \to \infty$ (as follows, e.g., from l’Hopital’s Rule). Thus this function is bounded on $[0, \infty)$, and so the O-estimate holds with $x_0 = 0$, and any value of c that is an upper bound for $q(x)$ on $[0, \infty)$.

In this simple example it is easy to determine an explicit, and best-possible, value for the O-constant c. Indeed, the above argument shows that the best-possible constant is $c = \max_{0 \leq x < \infty} q(x)$, with $q(x) = xe^{-x}$, and the maximum of $q(x)$ is easily determined by methods of calculus: The derivative of $q(x)$ equals $q'(x) = e^{-x}(1-x)$, which has a unique zero at $x = 1$. Thus that $q(x)$ attains its maximal value at $x = 1$, and so $c = q(1) = e^{-1}$ is the best-possible constant for the range $x \geq 0$.

Example 1.2. The argument used the previous example works in much more general situations. For example, consider the functions $f(x) = (x+1)^A$ and $g(x) = \exp((\log x)^{1+\epsilon})$, where A and ϵ are arbitrary positive constants. Since the quotient $q(x) = f(x)/g(x)$ of these two functions is nonnegative and continuous on the interval $[1, \infty)$ and tends to 0 as $x \to \infty$, it is bounded on this interval. Thus, we have the O-estimate

$$(x + 1)^A = O\left(\exp\left((\log x)^{1+\epsilon} \right) \right)$$

in the range $x \geq 1$. However, in contrast to the previous example, working out an explicit value for the O-constant c would be rather tedious. The O-notation allows us to ignore these complications: all we need to know is the existence of a constant, and this, as we have seen, is easy to establish with general continuity or compactness arguments.

Lecture Notes on Asymptotics
February 21, 2005
Example 1.3. If \(P(x) = \sum_{k=0}^{n} a_k x^k \) is a polynomial of degree \(n \), then
\[
P(x) = O(x^n).
\]

Proof. For \(x \geq 1 \) we have
\[
|P(x)| \leq \sum_{i=0}^{n} |a_i| x^i \leq \left(\sum_{i=0}^{n} |a_i| \right) x^n,
\]
so the required inequality holds with \(x_0 = 1 \) and \(c = \sum_{i=0}^{n} |a_i| \).

1.2.2 Dependence on parameters

In many cases, the functions involved in a \(O \)-estimate depend on one or more parameters. It may then be important to know whether the \(O \)-constant depends on these parameters or can be chosen independently of the parameters. If the constant (possibly) depends on one or more parameters, it is customary to indicate this dependence by placing the parameters as subscripts to the \(O \)-symbol and writing, for example, \(O_\lambda, O_k, \) or \(O_{k,\epsilon} \). The same convention applies, if the constant depends on a parameter arising in the range of an estimate (rather than the functions to be estimated).

To avoid mistakes, it is a good practice to explicitly indicate the dependence of \(O \)-estimates on any parameters by placing these parameters as subscripts to the \(O \)-symbols, and we will generally adhere to this practice.

If it is possible to choose the constant in a \(O \)-estimate independent of some parameter occurring in the definition of the function or the range of the estimate, we say that the estimate is uniform (or holds uniformly) with respect to the given parameter. Uniform estimates are more informative and more useful than nonuniform estimates, and obtaining uniform estimates or making non-uniform estimates uniform (e.g., by making the dependence on parameters explicit) is a desirable goal.

Example 1.4. In Example 1.2 we showed, by a simple continuity argument, that, for any positive constants \(A \) and \(\epsilon \), we have \((x+1)^A = O(\exp((\log x)^{1+\epsilon}))\) in the range \(x \geq 1 \). While, in this case, the range \(x \geq 1 \) could be chosen independently of the constants \(A \) and \(\epsilon \), this is not true for the \(O \)-constant \(c \). Thus, to indicate the (possible) dependence of the \(O \)-constant on \(A \) and \(\epsilon \), we should write this \(O \)-estimate more precisely as
\[
(x+1)^A = O_{A,\epsilon} \left(\exp \left((\log x)^{1+\epsilon} \right) \right) \quad (x \geq 1).
\]

In general, the subscript notation simply says that the constant may depend on the indicated parameters, not that it is not possible (for example,
through a more clever argument) to find a constant independent of the parameters. However, in this particular example, it is easy to see that the constant necessarily has to depend on both parameters A and ϵ.

1.2.3 Definition of “big oh”, general case

If $f(s)$ and $g(s)$ are functions of a real or complex variable s and S is an arbitrary set of (real or complex) numbers s (belonging to the domains of f and g), we write

$$f(s) = O(g(s)) \quad (s \in S),$$

if there exists a constant c such that

$$|f(s)| \leq c|g(s)| \quad (s \in S).$$

To be consistent with our earlier definition of “big oh” we make the following convention: If a range is not explicitly given, then the estimate is assumed to hold in a range of the form $x \geq x_0$, for a suitable constant x_0.

Further generalizations to functions of more than one variable can be made in an obvious manner.

Example 1.5. Given any positive constant $r < 1$, we have

$$\log(1 + z) = O_r(|z|) \quad (|z| < r).$$

Proof. Note that the function $\log(1 + z)$ is analytic in the open unit disk $|z| < 1$ and has power series expansion

$$\log(1 + z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^n \quad (|z| < 1).$$

Hence, in $|z| < 1$ we have

$$|\log(1 + z)| \leq \sum_{n=1}^{\infty} \frac{1}{n} |z^n| \leq \sum_{n=1}^{\infty} |z|^n = \frac{1}{1 - |z|} |z|.$$
Example 1.6. For any positive real number p we have

$$(x + y)^p = O_p(x^p + y^p) \quad (x, y \geq 0).$$

More generally, we have, for any positive integer n and any positive real number p,

$$(a_1 + \cdots + a_n)^p = O_{n,p}(a_1^p + \cdots + a_n^p) \quad (a_1, \ldots, a_n \geq 0),$$

where now the O-constant depends on both n and p.

Proof. The estimate (in the second, more general, form) can be proved via Hölder’s inequality; alternatively, it follows immediately from the simple observation

$$\left(\sum_{i=1}^{n} a_i\right)^p \leq \left(n \max_i a_i\right)^p = n^p(\max_i a_i)^p \leq n^p \sum_{i=1}^{n} a_i^p. \quad \square$$

1.2.4 “Oh” terms in arithmetic expressions

By a term $O(g(s))$ in an arbitrary arithmetic expression we mean a function $f(s)$ that satisfies the inequality in the definition of the O-estimate. In other words, a O-term can be thought of as a “black box” hiding some unknown function, and the only information we have about this function is that it satisfies the appropriate inequality.

This is a natural and useful convention that greatly simplifies the notation when working with O-expressions. For example, this convention allows us to write the relation (a form of the Prime Number Theorem)

$$\pi(x) - \frac{x}{\log x} = O\left(\frac{x}{\log x)^2}\right)$$

more naturally as

$$\pi(x) = \frac{x}{\log x} \left(1 + O\left(\frac{1}{\log x}\right)\right).$$

The precise meaning of this latter relation is that the function $\pi(x)$ is of the form $f(x) = (x/\log x)(1 + g(x))$, where $g(x)$ is a function satisfying $|g(x)| \leq c/\log x$ for all $x \geq x_0$, with suitable constants c and x_0.
Example 1.7. Power series expansions naturally lead to \(O\)-estimates in the above more generalized sense. In particular, if \(f(z)\) is a function analytic in some disk \(|z| < R\), then for any \(r < R\) and any fixed positive integer \(n\), we have, by Taylor’s theorem,

\[
f(z) = \sum_{k=0}^{n} a_k z^k + O_r(|z|^{n+1}) \quad (|z| < r),
\]

where the \(a_k\) are the Taylor coefficients of \(f(z)\).

1.2.5 The Vinogradov “\(\ll\)” notation

This notation was introduced by the Russian number theorist I.M. Vinogradov as an alternative to the \(O\)-notation. Along with the closely related notations “\(\gg\)” and “\(\asymp\)”, it has all become standard in number theory, though it is less common in other areas of mathematics. In the case of functions of a real variable \(x\) and (implicit) ranges of the form \(x \geq x_0\), these three notations are defined as follows:

- “\(f(x) \ll g(x)\)” is equivalent to “\(f(x) = O(g(x))\)”.
- “\(f(x) \gg g(x)\)” is equivalent to “\(g(x) \ll f(x)\)”.
- “\(f(x) \asymp g(x)\)” means that both “\(f(x) \ll g(x)\)” and “\(g(x) \gg f(x)\)” hold.

These definitions generalize in an obvious manner to more general functions and ranges.

If \(f(x) \asymp g(x)\), we say that \(f(x)\) and \(g(x)\) have the same order of magnitude. From the definition it is easy to see that “\(f(x) \asymp g(x)\)” holds if and only if there exist positive constants \(c_1\) and \(c_2\) and a constant \(x_0\) such that

\[
c_1|g(x)| \leq |f(x)| \leq c_2|g(x)| \quad (x \geq x_0).
\]

As with the \(O\)-notation, dependence on parameters may be indicated by putting the parameters as subscripts to the “\(\ll\)” or “\(\gg\)” symbols. For example, the estimate \((x+1)^A = O_A(\exp((\log x)^{1+\epsilon}))\), which we considered in Example 1.2, could have been written in the equivalent form

\[
(x+1)^A \ll_A,\epsilon \exp ((\log x)^{1+\epsilon}).
\]

The primary advantage of the Vinogradov notation over the \(O\)-notation is a typographical one: If the function \(g(x)\) is a complicated expression (for
example, a sum of several integrals), then \(f(x) \ll g(x) \) looks much cleaner than \(f(x) = O(g(x)) \) (which would require an oversized set of parentheses). In addition, the Vinogradov notation provides an easy way to express lower bounds by using the symbol “\(\gg \)” instead of “\(\ll \)”, and the “\(\sim \)” symbol allows one to express two \(O \)-estimates in a single statement.

The Vinogradov notation has the drawback that, unlike the \(O \)-notation, it does not extend to terms in arithmetic expressions. Thus, for example, while one can rewrite the estimate

\[
\pi(x) - \frac{x}{\log x} = O \left(\frac{x}{\log x}^2 \right)
\]

in an equivalent manner as

\[
\pi(x) = \frac{x}{\log x} \left(1 + O \left(\frac{1}{\log x} \right) \right),
\]

only the first version can be stated using the Vinogradov “\(\ll \)” notation.

Thus, depending on the situation, one or the other of these two notations may be more convenient to use, and we will use both notations interchangeably throughout this course, rather than settle on one particular type of notation.

Example 1.8. For any positive integer \(n \) and any positive real number \(p \) we have

\[
(a_1 + \cdots + a_n)^p \sim_{p,n} a_1^p + \cdots + a_n^p \quad (a_1, \ldots, a_n \geq 0).
\]

Proof. The upper bound of this estimate (i.e., the “\(\ll \)” portion of “\(\sim \)”) was established (quite easily) in Example 1.6, but the proof of the lower bound is just as simple: Since

\[
a_1^p + \cdots + a_n^p \leq n(\max(a_1, \ldots, a_n))^p \leq n (a_1 + \cdots + a_n)^p,
\]

we obtain the “\(\gg \)” portion of the estimate with constant \(1/n \).

This example is a good illustration of the benefits of the “\(\sim \)” notation. With this notation, the asserted two-sided estimate we claimed takes a concise, and suggestive, one-line form, whereas the same estimate in the \(O \)-notation would have required two somewhat clumsy looking \(O \)-relations.

Example 1.9. If \(f(x) = \sqrt{\log x} \), then we have

\[
f(y) \asymp f(x) \quad (x^{1/2} \leq y \leq x^2, x \geq 1).
\]
1.2. THE “OH” NOTATIONS

Proof. This follows immediately on noting that \(f(y) \) is monotone increasing, with

\[
f(x^{1/2}) = \sqrt{\log x^{1/2}} = 2^{-1/2} \sqrt{\log x} = 2^{-1/2} f(x) \quad (x \geq 1).
\]

and, similarly, \(f(x^2) = 2^{1/2} f(x) \). Moreover, the same argument shows that, except for the values 1/2 and 2 of the exponents of \(x \) (which could be replaced by arbitrary positive constants), the interval \(x^{1/2} \leq y \leq x^2 \) is essentially the maximal interval in which \(f(y) \asymp f(x) \) holds.

\(\square \)

1.2.6 Other variants of the \(O \)-notation

Some other notations that are equivalent to or related to the \(O \)-notation and which are occasionally used are the following. All of these notations are non-standard and do not have a generally accepted meaning, so they should be avoided, or at least precisely defined before use.

- In some areas of analysis (especially harmonic analysis), the symbol \(\lesssim \) is used with the same meaning as \(\ll \).

- The symbol \(\ll \) is sometimes used to indicate that one function is “of smaller order of magnitude” than another function, usually in the sense that the ratio between the two functions tends to 0 (i.e., the equivalent of the \(o \)-notation defined below). In their book [?], Graham, Knuth, and Patashnik use the symbol \(\preceq \) in the same sense. However, neither of these notation is very widespread.

- In numerical applications the value of a \(O \)-constant is important. One notation that refines the \(O \)-notation by keeping track of constants is the \(\theta \)-notation, which means the same as the \(O \)-notation with constant \(c = 1 \). For example, since \(|\log(1 + z)| \leq \sum_{n=1}^{\infty} |z|^n/n \leq |z|/(1 - |z|) \leq 2|z| \) for \(|z| \leq 1/2 \), we have, using the \(\theta \)-notation, \(\log(1 + z) = \theta(2|z|) \) for \(|z| \leq 1/2 \).

- The symbol \(\approx \) is sometimes used with the same meaning as \(\asymp \). However, more commonly, this symbol is used in an informal manner (e.g., in heuristic arguments) to indicate that one quantity is “approximately” equal to another quantity.
1.2.7 The “small oh” notation and asymptotic equivalence

The notation
\[f(x) = o(g(x)) \quad (x \to \infty) \]
means that \(g(x) \neq 0 \) for sufficiently large \(x \) and \(\lim_{x \to \infty} f(x)/g(x) = 0 \). If this holds, we say that \(f(x) \) is of smaller order than \(g(x) \). This is equivalent to having a \(O \)-estimate \(f(x) = O(g(x)) \) with a constant \(c \) that can be chosen arbitrarily small (but positive) and a range \(x \geq x_0(c) \) depending on \(c \). Thus, a \(o \)-estimate is stronger than the corresponding \(O \)-estimate.

A closely related notation is that of asymptotic equivalence:
\[f(x) \sim g(x) \quad (x \to \infty) \]
means that \(g(x) \neq 0 \) for sufficiently large \(x \) and \(\lim_{x \to \infty} f(x)/g(x) = 1 \). If this holds, we say that \(f(x) \) is asymptotic (or “asymptotically equivalent”) to \(g(x) \) as \(x \to \infty \). Just as a \(o \)-estimate refines the \(O \)-estimate, the asymptotic equivalence relation \(f(x) \sim g(x) \) refines the order of magnitude estimate \(f(x) \asymp g(x) \).

By an asymptotic formula for a function \(f(x) \) we mean a relation of the form \(f(x) \sim g(x) \), where \(g(x) \) is a “simple” function.

In much the same way as the \(O \)-notation, the \(o \)-notation can be generalized to functions for complex variables, and to more general limits: If \(f(s) \) and \(g(s) \) are functions of a real or complex variable \(s \) and \(a \) is a real or complex number or infinity, we write
\[f(s) = o(g(s)) \quad (s \to a), \]
if the limit \(\lim_{s \to a} f(s)/g(s) \) exists and is equal to 0. Asymptotic formulas with respect to the limit \(s \to a \) are defined analogously.

It is important to keep in mind that the \(o \)-notation is always with respect to a given limiting process. If a limiting process is not explicitly given (in a form like “\(x \to a \)”), the limit is usually understood to be taken as the variable tends to infinity. However, for clarity and to avoid mistakes, it is good practice to indicate the limiting process explicitly, and we will generally adhere to this practice.

In the same way as we have done with the \(O \)-notation, we allow \(o \)-terms to appear inside arithmetic expressions: a term \(o(g(x)) \) stands for a function \(f(x) \) that satisfies \(\lim_{x \to \infty} f(x)/g(x) = 0 \) (but on which we have no further information). With this convention the asymptotic formula \(f(x) \sim g(x) \) is easily seen to be equivalent to either of the relations
\[f(x) = g(x) + o(g(x)) \]
or
\[f(x) = g(x)(1 + o(1)). \]

Another related notation that is used, for example, in number theory, is the \(\Omega \)-notation. This notation simply means the opposite of “small oh”: Namely, we write
\[f(x) = \Omega(g(x)) \quad (x \to \infty), \]
if the relation \(f(x) = o(g(x)) \) is false, i.e., if \(\limsup_{x \to \infty} |f(x)/g(x)| > 0 \).

Analogous definitions apply for the case of more general functions or limits. For example, we have \(\sin(x) = \Omega(1) \) as \(x \to \infty \), and \(\sin(x) = \Omega(x) \) as \(x \to 0 \).

Note that the relation \(f(x) = \Omega(g(x)) \) is not equivalent to \(g(x) = O(f(x)) \). Indeed, the latter means that \(|f(x)| > c|g(x)| \) holds, with some positive constant \(c \), for all sufficiently large \(x \), whereas \(f(x) = \Omega(g(x)) \) only requires this inequality to hold for arbitrarily large values of \(x \).

1.2.8 \(O \)-estimates versus \(o \)-estimates

A \(o \)-estimate is a qualitative, rather than quantitative, statement: \(f(x) = o(g(x)) \) simply means that the quotient \(f(x)/g(x) \) tends to 0 as \(x \to \infty \), but it says nothing about the rate of convergence. In almost all cases where \(o \)-estimates (or, equivalently, asymptotic formulas) are known, these estimates arise as corollaries to more precise \(O \)-estimates: A \(O \)-estimate of the form \(f(x) = O(g(x)/\psi(x)) \) with some explicit function \(\psi(x) \) (such as \(\psi(x) = \log x \)) that tends to infinity as \(x \to \infty \) implies the \(o \)-estimate \(f(x) = o(g(x)) \) and provides more information. The chief advantage of \(o \)-estimates and asymptotic formulas is that they are easy to state and make for clean and easy-to-remember theorems. However, in the course of proving such estimates, it is almost always advisable to carry the argument through with \(O \)-estimates, and only at the very end, if necessary, make the transition to a \(o \)-estimate. The main reason for this is that working with \(o \)-terms is fraught with pitfalls, whereas \(O \)-terms can be manipulated fairly easily and safely, as we will show in the next section.

1.3 Working with the “oh” notations

Recall that a \(O \)-term in an arithmetic expression in equations represents a function that satisfies the inequality implicit in the definition of a \(O \)-estimate. With this convention, expressions involving several \(O \)-terms have a well-defined meaning. However, we have to be careful when working with such terms as these are not ordinary arithmetic expressions and cannot be
manipulated in the same way. Fortunately, most arithmetic operations are permissible with O-terms.

1.3.1 Rules for “big oh” and “small oh” estimates

We now list some basic rules for manipulating O-terms. For simplicity, we state these only for functions of a real variable x and do not explicitly indicate the range (which thus, by our convention, is of the form $x \geq x_0$). However, the same rules hold in the more general context of functions of a complex variable s and O-estimates valid in a general range $s \in S$.

- **Constants in O-terms:** If C is a positive constant, then the estimate $f(x) = O(Cg(x))$ is equivalent to $f(x) = O(g(x))$. In particular, the estimate $f(x) = O(C)$ is equivalent to $f(x) = O(1)$.

- **Transitivity:** O-estimates are transitive, in the sense that if $f(x) = O(g(x))$ and $g(x) = O(h(x))$, then $f(x) = O(h(x))$.

- **Multiplication of O-terms:** If $f_i(x) = O(g_i(x))$ for $i = 1, 2$, then $f_1(x)f_2(x) = O(g_1(x)g_2(x))$.

- **Pulling out factors:** If $f(x) = O(g(x)h(x))$, then $f(x) = g(x)O(h(x))$. This property allows us to factor out main terms from O-expressions. For example, we can write the relation $f(x) = x + O(x/\log x)$ as $f(x) = x(1 + O(1/\log x))$. The latter relation is more natural as it clearly shows the relative error in the approximation of $f(x)$ by x.

- **Summation of O-terms:** If $f_i(x) = O(g_i(x))$ for $i = 1, 2, \ldots, n$, where the O-constants are independent of i, then
 \[\sum_{i=1}^{n} f_i(x) = O\left(\sum_{i=1}^{n} |g_i(x)|\right). \]
 In other words, O’s can be pulled out of sums, provided the summands are replaced by their absolute values and the O-constants do not depend on the summation index. The same holds for infinite series $\sum_{i=1}^{\infty} f_i(x)$ in which each term satisfies a O-estimate of the above type (again with an O-constant that is independent of the summation index i).

- **Integration of O-terms:** If $f(x)$ and $g(x)$ are integrable on finite intervals and satisfy $f(x) = O(g(x))$ for $x \geq x_0$, then
 \[\int_{x_0}^{x} f(y)dy = O\left(\int_{x_0}^{x} |g(y)|dy\right) \quad (x \geq x_0). \]
In other words, O’s can be pulled out of or integrals provided the integrand is replaced by its absolute value.

Proofs. These rules are straightforward consequences of the definition of a O-estimate. As an example, we give a proof for the last rule. Suppose $f(x)$ and $g(x)$ are integrable on finite intervals and satisfy $f(x) = O(g(x))$ for $x \geq x_0$. Thus that there exists a constant c such that $|f(x)| \leq c|g(x)|$ holds for all $x \geq x_0$. But then we have, for $x \geq x_0$,

$$
\left| \int_{x_0}^{x} f(y)dy \right| \leq \int_{x_0}^{x} |f(y)|dy \leq c \int_{x_0}^{x} |g(y)|dy.
$$

Hence

$$
\int_{x_0}^{x} f(y)dy = O \left(\int_{x_0}^{x} |g(y)|dy \right) \quad (x \geq x_0),
$$

as desired.

Rules for o-estimates. Some, but not all, of the above rules for O-estimates carry over to o-estimates. For example, the first four rules also hold for “o”-estimates. On the other hand, this is not the case for the last two rules. For instance, if $f(x) = e^{-x}$ and $g(x) = 1/x^2$, then $f(x) = o(g(x))$ as $x \to \infty$. On the other hand, the integrals $F(x) = \int_1^{x} f(x)dy$ and $G(x) = \int_1^{x} g(y)$ are equal to $e^{-1} - e^{-x}$ and $1 - 1/x$, respectively, and satisfy $\lim_{x \to \infty} F(x)/G(x) = e^{-1}$, so the relation $F(x) = o(G(x))$ does not hold. This example illustrates the difficulties and pitfalls that one may encounter when trying to manipulate o-terms. To avoid these problems, it is advisable to work with O-estimates rather than o-estimates, whenever possible.

1.3.2 Equations involving O-terms

In all examples we considered so far, all O-terms occurred on the right-hand side of the equation. It is useful to further extend the usage of the O-notation by allowing equations in which O-terms arise on both sides, provided one takes care in properly interpreting such an equation. In particular, *equations in which there are O-terms on both sides are not symmetric and should be read left to right.* For example, the relation

$$
O(\sqrt{x}) = O(x) \quad (x \geq 1),
$$

is to be understood in the sense that *any function $f(x)$ satisfying $f(x) = O(\sqrt{x})$ for $x \geq 1$ also satisfies $f(x) = O(x)$ for $x \geq 1,* a statement that is
obviously true. On the other hand, if we interchange the left- and right-hand sides of the above equation, we get

\[O(x) = O(\sqrt{x}) \quad (x \geq 1), \]

which, when interpreted in the same way (i.e., read left to right) is patently false.

For similarly obvious reasons, \(O \)-terms in equations cannot be cancelled; after all, each \(O \)-term stands for a function satisfying the appropriate \(O \)-estimate, and multiple instances of the same \(O \)-term (say, multiple terms \(O(x) \)) in general it will represent different functions.

1.3.3 Some useful techniques

Extending the range of an \(O \)-estimate. According to our convention, an asymptotic estimate for a function of \(x \) without an explicitly given range is understood to hold for \(x \geq x_0 \) for a suitable \(x_0 \). This is convenient as many estimates (e.g., \(\log \log x = O(\sqrt{\log x}) \)), do not hold, or do not make sense, for small values of \(x \), and the convention allows one to just ignore those issues. However, there are applications in which it is desirable to have an estimate involving a simple explicit range for \(x \), such as \(x \geq 1 \), instead of an unspecified range like \(x \geq x_0 \) with a “sufficiently large” \(x_0 \). This can often be accomplished in two steps as follows: First establish the desired estimate for \(x \geq x_0 \), with a suitable (and possibly quite large) constant \(x_0 \). Then use direct (and usually trivial) arguments to show that the estimate also holds for \(1 \leq x \leq x_0 \).

Example 1.10. One form of the Prime Number Theorem states that

\[\pi(x) = \text{Li}(x) + O\left(\frac{x}{(\log x)^2}\right). \]

Suppose we have established this estimate for \(x \geq x_0 \), with a suitable (and possibly quite large) constant \(x_0 \). To show that the same estimate in fact holds for \(x \geq 2 \), we argue as follows: Assume \(x_0 \geq 2 \) (otherwise there is nothing to prove) and consider the range \(2 \leq x \leq x_0 \). In this range the functions \(\pi(x) \) and \(\text{Li}(x) \) are bounded from above, so we have

\[|\pi(x) - \text{Li}(x)| \leq c_1 \quad (2 \leq x \leq x_0) \]

with some constant \(c_1 \) depending on \(x_0 \). (For example, since both \(\pi(x) \) and \(\text{Li}(x) \) are nondecreasing functions, we could take \(c_1 = \pi(x_0) + \text{Li}(x_0) \).)
the other hand, in the same range the function in the error term is bounded from below by a positive constant, i.e., we have

$$\frac{x}{(\log x)^2} \geq c_2 \quad (2 \leq x \leq x_0)$$

with some positive constant c_2 (e.g., $c_2 = 2(\log 2)^{-2}$). Hence we have

$$|\pi(x) - \text{Li}(x)| \leq c x \frac{x}{\log x^2} \quad (2 \leq x \leq x_0)$$

with $c = c_1 c_2^{-1}$, which proves the desired estimate for the range $2 \leq x \leq x_0$.

Factoring out dominant terms. A simple, but very effective technique in asymptotic analysis is to identify a dominant term in an estimate and then factor out this term. This often facilitates subsequent estimates, and it leads to a relation that clearly displays the relative error, which is usually more informative than the absolute error.

Example 1.11. As a simple example illustrating this technique, we try to determine the behavior of the function

$$f(x) = \sqrt{x^2 + 1}.$$

as $x \to \infty$. We begin by noting that the term x^2 is the dominant term under the square root sign, so we expect $f(x)$ to be close to $\sqrt{x^2} = x$. To make this precise, we factor out the term x^2, to get $f(x) = x\sqrt{1 + 1/x^2}$. Since for $x \geq 2$ we have $1/x^2 \leq 1/4$, we can estimate $\sqrt{1 + 1/x^2}$ using the binomial series expansion of $(1+y)^\alpha$, which is valid, for example, in $|y| \leq 1/2$. Taking only the first term gives $\sqrt{1 + 1/x^2} = 1 + O(x^{-2})$, and hence

$$f(x) = x \left(1 + O\left(\frac{1}{x^2}\right)\right) = x + O\left(\frac{1}{x}\right).$$

Taking more terms in the series would lead to correspondingly more precise estimates for $f(x)$.

Example 1.12. The technique of factoring out dominant can also be useful when applied only to parts of an arithmetic expression, such as the argument of a logarithm or the denominator of a fraction. For example, let

$$f(x) = \log(\log x + \log \log x).$$
In the argument of the logarithm the term $\log x$ is dominant. We factor out this term, use the functional equation of the logarithm along with the expansion $\log(1 + y) = y + O(y^2)$, which is valid in $|y| \leq 1/2$. Setting

$$L = \log x, \quad L_2 = \log \log x = \log L,$$

we then get (for sufficiently large x)

$$f(x) = \log(L + L_2) = \log(L(1 + L_2/L))$$

$$= L_2 + \log(1 + L_2/L)$$

$$= L_2 + \frac{L_2}{L} + O\left(\frac{L_2^2}{L^2}\right)$$

$$= L_2 \left(1 + \frac{1}{L} + O\left(\frac{L_2^2}{L^2}\right)\right).$$

Taking logarithms. Another sometimes very useful technique in asymptotic analysis is to take logarithms in order to transform products to sums and exponentials to products.

Example 1.13. Consider the function

$$f(x) = (\log x + \log \log x)^{1/\sqrt{\log \log x}}.$$

This is a rather fierce looking function, and its behavior as $x \to \infty$ is anything but obvious. However, taking logarithms we get

$$\log f(x) = \frac{\log(\log x + \log \log x)}{\sqrt{\log \log x}}$$

and since, by the previous example, the numerator is asymptotic to $\log \log x$, we see that $\log f(x) \sim \sqrt{\log \log x}$, and thus $f(x) = \exp((1 + o(1))\sqrt{\log \log x})$, as $x \to \infty$. This shows that $f(x)$ tends to infinity as $x \to \infty$, but at a slower rate than any fixed power of $\log x$.

Swapping main and error terms in convergent series and integrals

A common problem in asymptotic analysis is that of estimating partial sums $S(x) = \sum_{n \leq x} a_n$ of an infinite series $\sum_{n=1}^{\infty} a_n$. While the sums $S(x)$ can rarely be evaluated in closed form, it is usually easy to get estimates for the summands of the form $a_n = O(\phi(n))$. Applying such an estimate directly to the summands in $S(x)$ would lead to an error term of size $O(\sum_{n \leq x} |\phi(n)|)$, which is at best $O(1)$ (unless $\phi(n) = 0$ for all n). However, if the series...
\(\sum_{n=1}^{\infty} |\phi(n)| \) (and hence also \(\sum_{n=1}^{\infty} \)) converges, we can use the following trick to obtain an estimate for \(S(x) \) with error term tending to zero as \(x \to \infty \).

Namely, we extend the range of summation in \(S(x) = \sum_{n \leq x} a_n \) to infinity and write \(S(x) = S - R(x) \), where \(S = \sum_{n=1}^{\infty} a_n \) and \(R(x) = \sum_{n>x} a_n \).

Applying now the estimate \(a_n = O(\phi(n)) \) to the tails \(R(x) \) of the series then leads to an estimate with error term \(O(\sum_{n>x} |\phi(n)|) \). The convergence of the series \(\sum_{n=1}^{\infty} |\phi(n)| \) implies that this error term tends to zero, and usually it is easy to obtain more precise estimates for this error term.

Example 1.14. Consider the sum

\[
S(x) = \sum_{\leq x} \left(\frac{1}{n} - \log \left(1 + \frac{1}{n}\right)\right) = \sum_{n \leq x} a_n.
\]

The terms in this series satisfy \(a_n = O(1/n^2) \) for all \(n \), since \(x - x^2/2 \leq \log(1 + x) \leq x \) for \(0 \leq x \leq 1 \) (which can be seen, for example, from the fact that \(\log(1 + x) = x - x^2/2 + x^3/3 - \ldots \) is an alternating series with decreasing terms). Substituting this estimate directly into the terms in \(S(x) \) would only give the estimate

\[
S(x) = O \left(\sum_{n \leq x} \frac{1}{n^2} \right) = O(1).
\]

However, the trick of extending the summation to infinity leads to an estimate with error term \(O(1/x) \),

\[
S(x) = S + O \left(\sum_{n>x} \frac{1}{n^2} \right) = S + O \left(\frac{1}{x} \right),
\]

where \(S = \sum_{n=1}^{\infty} (1/n - \log(1 + 1/n)) \) is some (finite) constant.

Note that the method does not give a value for this constant. This is an intrinsic limitation of the method, but in most cases the series simply do not have an evaluation in “closed form” and trying to find such a evaluation would be futile. One can, of course, estimate this constant numerically by computing the partial sums of the series.

1.3.4 Example: Estimates for the prime counting function

As an illustration of the various notations introduced here, we present a list of estimates for the prime counting function \(\pi(x) \), the number of primes
\[x \leq x, \text{ which have been proved over the past century or so, or put forth as conjectures. Each of these estimates represented a major milestone in our understanding of the behavior of } \pi(x). \]

- **Chebyshev’s estimate:** This estimate establishes the correct order of magnitude of \(\pi(x) \):

\[
\pi(x) \asymp \frac{x}{\log x} \quad (x \geq 2).
\]

- **The Prime Number Theorem (PNT):** In its simplest and most basic form, the PNT gives an asymptotic formula for \(\pi(x) \):

\[
\pi(x) \sim \frac{x}{\log x} \quad (x \to \infty).
\]

This result, arguably the most famous result in number theory, had been conjectured by Gauss, who, however, was unable to prove it. It was eventually proved in the late 19th century, independently and at about the same time, by Jacques Hadamard and Charles de la Vallée Poussin.

- **PNT with modest error term:** A more precise version of the above form of the PNT shows that the *relative* error in the above asymptotic formula is of order \(O(1/\log x) \):

\[
\pi(x) = \frac{x}{\log x} \left(1 + O\left(\frac{1}{\log x}\right)\right) \quad (x \geq 2).
\]

This version, while far from the best-known version of the PNT, is sharp enough for many applications.

- **PNT with “classical” error term:** To be able to state more precise versions of the PNT, the function \(x/\log x \) as approximation to \(\pi(x) \) is too crude; a better approximation is provided by the “logarithmic integral”,

\[
\text{Li}(x) = \int_{2}^{x} \frac{dt}{\log t} \quad (x \geq 2).
\]

With \(\text{Li}(x) \) as main term in the approximation to \(\pi(x) \), the relative error in the approximation can be shown to be much smaller than any negative power of \(\log x \). Indeed, the analytic method introduced by
Hadamard and de la Vallée Poussin in their proof of the PNT yields the estimate
\[\pi(x) = \text{Li}(x) \left(1 + O\left(\exp\left(-c\sqrt{\log x}\right)\right) \right) \quad (x \geq 3), \]
where \(c \) is a positive constant. This result, which is now more than 100 years old, can be considered the “classical” version of the PNT with error term.

- **PNT with Vinogradov-Korobov error term**: The only significant improvement in the error term for the PNT obtained during the past 100 years is due to I.M. Vinogradov and A. Korobov, who improved the above classical estimate to
\[\pi(x) = \text{Li}(x) \left(1 + O\left(\exp\left(-\left((\log x)^{3/5} - \epsilon\right)\right)\right) \right) \quad (x \geq 3), \]
for any given \(\epsilon > 0 \). The Vinogradov-Korobov result is some 50 years old, but it still represents essentially the sharpest known form of the PNT.

- **PNT with conjectured error term**: A widely believed conjecture is that the “correct” relative error in the PNT should be about \(1/\sqrt{x} \). More precisely, the conjecture states that
\[\pi(x) = \text{Li}(x) \left(1 + O(\epsilon) \left(x^{-1/2+\epsilon} \right) \right) \quad (x \geq 3) \]
holds for any given \(\epsilon > 0 \). This conjecture is known to be equivalent to the Riemann Hypothesis. It is interesting to compare the size of the (relative) error term in this conjectured form of the PNT with that in the sharpest known form of the PNT, i.e., the Vinogradov-Korobov estimate cited above: To this end, note that
\[\exp\left(-\left((\log x)^{3/5} - \epsilon\right)\right) \geq \exp\left(-\left((\log x)^{3/5}\right)\right) \gg \epsilon x^{-\epsilon} \quad (x \geq 3) \]
for any \(\epsilon > 0 \). Thus, while the conjectured form of the PNT involves a relative error of size \(O_\alpha(x^{-\alpha}) \) for any fixed exponent \(\alpha < 1/2 \), our present knowledge does not even give such an estimate for some positive value of \(\alpha \).

- **Omega estimate**: It is known that the relative error in the PNT cannot be of order \(O(x^{-\alpha}) \) with an exponent \(\alpha > 1/2 \). Using the “Omega” notation introduced above, this can be expressed as follows: For any \(\alpha > 1/2 \), we have
\[\pi(x) - \text{Li}(x) = \Omega\left(\text{Li}(x)x^{-\alpha}\right) \quad (x \to \infty). \]
1.3.5 Further examples

We conclude this section with some examples that illustrate typical arguments in working with O-terms. Unless otherwise specified, the ranges of validity of the estimates in this subsection are assumed to be of the form $x \geq x_0$ with a suitable x_0.

Example 1.15 (Powers of expressions involving O-terms). Let p be a positive real number, and suppose $r(x) = o(1)$ as $x \to \infty$. Then

$$(1 + O(r(x)))^p = 1 + O_p(r(x)).$$

This is a very useful relation which allows one to essentially ignore exponents of factors of the type $1 + O(r(x))$ in O-estimates. For example, if $f(x)$ is a positive function such that

$$f(x)^2 = x \left(1 + O\left(\frac{1}{\log x}\right)\right),$$

then applying the above relation with $p = 1/2$ and $r(x) = 1/\log x$ gives

$$f(x) = \sqrt{x} \left(1 + O\left(\frac{1}{\log x}\right)\right).$$

Proof. Suppose $f(x)$ is a function given by the left-hand side of this relation, i.e., $f(x)$ is of the form $f(x) = (1 + h(x))^p$, where $h(x) = O(r(x))$. By definition, the latter relation means that there exist constants c and x_0 such that $|h(x)| \leq c|r(x)|$ for $x \geq x_0$. Moreover, since, by assumption, $r(x) = o(1)$, there exists x_1 such that $|r(x)| \leq 1/(2c)$ for $x \geq x_1$, and thus $|h(x)| \leq 1/2$ for $x \geq \max(x_0, x_1)$. Applying now the elementary estimate (which follows, for example, from the Taylor expansion of the function $(1 + y)^p$)

$$(1 + y)^p = 1 + O_p(y) \quad (|y| \leq 1/2),$$

we conclude that

$$f(x) = 1 + O_p(h(x)) = 1 + O(r(x)) \quad (x \geq \max(x_0, x_1)),$$

which is the desired relation.

Example 1.16 (Logarithms of order of magnitude estimates). Let $f(x)$ and $g(x)$ be positive functions. Then

$$f(x) \asymp g(x)$$

holds if and only if

$$\log f(x) = \log g(x) + O(1).$$
Proof. Suppose first that $f(x) \asymp g(x)$. In view of our assumption that f and g are positive-valued functions, this means that there exists x_0 and positive constants c_1 and c_2 such that

$$c_1 f(x) \leq g(x) \leq c_2 f(x) \quad (x \geq x_0).$$

Taking logarithms, we obtain

$$\log c_1 + \log f(x) \leq \log g(x) \leq \log f(x) + \log c_2 \quad (x \geq x_0).$$

Hence

$$|\log f(x) - \log g(x)| \leq \max(|\log c_1|, |\log c_2|) \quad (x \geq x_0),$$

i.e., $\log f(x) = \log g(x) + O(1)$.

Conversely, if $\log f(x) = \log g(x) + O(1)$, then there exists x_1 and a positive constant c such that

$$\log f(x) - c \leq \log g(x) \leq \log f(x) + c \quad (x \geq x_1).$$

This implies

$$e^{-c} f(x) \leq g(x) \leq e^c f(x) \quad (x \geq x_1),$$

which shows that $f(x) \asymp g(x)$.

The relations given in the following two examples can be established in the same manner.

Example 1.17 (Logarithms of asymptotic equivalences). If $f(x)$ and $g(x)$ are positive functions, then

$$f(x) \sim g(x) \quad (x \to \infty)$$

holds if and only if

$$\log f(x) = \log g(x) + o(1) \quad (x \to \infty).$$

Example 1.18 (Logarithms of O-estimates involving error factors). If $f(x)$ and $g(x)$ are positive functions, and $r(x)$ satisfies where $r(x) = o(1)$ as $x \to \infty$, then

$$f(x) = g(x)(1 + O(r(x)))$$

holds if and only if

$$\log f(x) = \log g(x) + O(r(x)) \quad (x \to \infty).$$
1.4 Asymptotic Series

1.4.1 Introduction

As mentioned in Section 1.1, the logarithmic integral \(\text{Li}(x) = \int_{2}^{x} \log(t) \, dt \) satisfies the estimate

\[
\text{Li}(x) = \frac{x}{\log x} \left(\sum_{k=0}^{n-1} \frac{k!}{(\log x)^k} + O_n \left(\frac{1}{(\log x)^n} \right) \right)
\]

for any fixed positive integer \(n \) (and a range of the form \(x \geq x_0(n) \)). This estimate is reminiscent of the approximation of an analytic function by the partial sums of its power series. Indeed, setting \(z = (\log x)^{-1} \) and \(a_k = k! \), the expression in parentheses in the above estimate for \(\text{Li}(x) \) takes the form

\[
\sum_{k=0}^{n-1} a_k z^k + O_n(|z|^n).
\]

The latter expression is of the form of the usual \(n \)-term Taylor approximation to an analytic function with power series \(\sum_{k=0}^{\infty} a_k z^k \). However, there is one significant difference: With the above choice of coefficients \(a_k \), the series \(\sum_{k=0}^{\infty} a_k z^k \) diverges at all \(z \neq 0 \), and thus does not represent an analytic function.

This is an example of a very common phenomenon in asymptotic analysis that gives rise to the concept of an “asymptotic series”. Roughly speaking, an asymptotic series (more precisely, an asymptotic series expansion) for a given function is an infinite series that has the same approximation properties as the Taylor series expansion of an analytic function, but which does not (necessarily) converge.

1.4.2 Definition of an asymptotic series

We now give a formal definition of an asymptotic series in a rather general sense, which encompasses, for example, expansions involving more complicated terms than \(x^n \), such as non-integral powers of \(x \), or products of powers of \(x \) with powers of \(\log x \).

Let \(\phi_0(x), \phi_1(x), \ldots \) be a sequence of functions satisfying

\[
\phi_{n+1}(x) = o(\phi_n(x)) \quad (x \to \infty)
\]

for each \(n \). A (formal) series of the form

\[
\sum_{k=0}^{\infty} a_k \phi_k(x)
\]
1.4. ASYMPTOTIC SERIES

is called an **asymptotic series** for a function \(f(x) \), as \(x \to \infty \), if, for each \(n \),

\[
f(x) = \sum_{k=0}^{n} a_k \phi_k(x) + o(\phi_n(x)) \quad (x \to \infty).
\]

If this holds, we write\(^4\)

\[
f(x) \sim \sum_{k=0}^{\infty} a_k \phi_k(x) \quad (x \to \infty).
\]

Asymptotic series with respect to other limiting processes, such as \(x \to 0 \), are defined analogously. Moreover, these definitions can be generalized to functions of complex variables in an obvious manner.

Example 1.19. Here are some examples of asymptotic series expansions:

1. A trivial example of an asymptotic series is a power series expansion of an analytic function: If \(f(z) \) is analytic in some disk \(|z| < R \), then its power series representation is also an asymptotic series for \(f(z) \), as \(z \to 0 \), with \(\phi_n(z) = z^n \) as the basis functions.

2. A non-trivial, but very common, asymptotic series expansion is one of the form

\[
f(x) \sim \sum_{k=0}^{\infty} a_k x^{-k} \quad (x \to \infty),
\]

i.e., a series with \(\phi_n(x) = x^{-n} \). For example the above-mentioned series occurring in the expansion of \(\text{Li}(x) \) is of this form if we substitute \(x \) for \(\log x \). An asymptotic series of this type (i.e., a series in the functions \(x^0, x^{-1}, x^{-2}, \ldots \)) is sometimes called an **asymptotic power series**.

\(^4\)The notation “\(\sim \)” here is the same as that used for asymptotic equivalence (as in “\(f(x) \sim g(x) \)”), though it has a very different meaning. The usage of the symbol “\(\sim \)” in two different ways is somewhat unfortunate, but is now rather standard, and alternative notations (such as using the symbol “\(\approx \)” instead of “\(\sim \)” in the context of asymptotic series) have their own drawbacks. In practice, the intended meaning is usually clear from the context. Since most of the time we will be dealing with the symbol “\(\sim \)” in the asymptotic equivalence sense, we make the convention that, unless otherwise specified, the symbol “\(\sim \)” is to be interpreted in the sense of an asymptotic equivalence.
1.4.3 Remarks

While asymptotic series share many properties with ordinary power series, there are also some notable differences. The most glaring difference is of course the fact that, in general, an asymptotic series does not converge; it “represents” the function only in an asymptotic sense. However, there are other differences as well. In particular, asymptotic series expansions are, in general, not unique, and a function is not uniquely determined by its asymptotic series expansion.

Example 1.20. If $f(x)$ has the asymptotic series expansion

$$f(x) \sim \sum_{k=0}^{\infty} a_k x^{-k} \quad (x \to \infty),$$

then any function $g(x)$ satisfying $g(x) = f(x) + O_n(x^{-n})$ for every fixed positive integer n (e.g., $g(x) = f(x) + e^{-x}$) has the same asymptotic series expansion. This follows immediately from the definition of an asymptotic series.
1.5 Exercises

1.1 Prove the following estimates rigorously, with explicit values for the constants.

(i) \(\log x \ll 1/x \) (0 < x < 1).

(ii) \(\log(1 + x) = x + O(x^2) \) (|x| ≤ c, c any fixed constant with 0 < c < 1)

(iii) \(\cos x = 1 + O(x^2) \) (x \in \mathbb{R})

(iv) \(\log(1 + x^2) = O(\log x) \) (x ≥ 2).

(v) \(\exp(-\sqrt{\log x}) = O((\log x)^{-2}) \) (x ≥ 2).

1.2 Show that

\[
\left(\frac{\sin x}{x} \right)^2 \begin{cases}
= O(1/x^2) & \text{if } |x| \geq 1, \\
\asymp 1 & \text{if } |x| < 1.
\end{cases}
\]

1.3 Show that, for any real number \(\alpha \),

\[
(1 + x)^\alpha \begin{cases}
\asymp_\alpha x^\alpha & \text{if } x \geq 1, \\
\asymp_\alpha 1 & \text{if } 0 \leq x < 1.
\end{cases}
\]

1.4 Determine the set of real numbers \(\alpha \geq 0 \) for which

\[
\exp((x + 1)^\alpha) \sim \exp(x^\alpha) \quad (x \to \infty).
\]

1.5 Find a function that is of order \(O_A((\log x)^{-A}) \) for every positive constant \(A \), but which is not of order \(O_\epsilon(\exp(-\log x)^\epsilon) \) for any \(\epsilon > 0 \).

1.6 Show that if \(\delta(x) \) is a function satisfying \((*)\) \(\delta(x) = o(1) \) as \(x \to \infty \), then the estimate

\[
f(x) = g(x)(1 + O(\delta(x)))
\]

holds if and only if

\[
g(x) = f(x)(1 + O(\delta(x)))
\]

(In other words, this says that, under the condition \((*)\), factors of the form \((1 + O(r(x)))\) may be moved from one side of an equation to the other side, or, equivalently, that \((1 + O(r(x)))^{-1} = 1 + O(r(x))\).) Also construct an example showing that the same conclusion does not hold (in general) with the weaker condition \(\delta(x) = O(1) \) in place of \((*)\).
1.7 Prove that
\[\exp \{ (1 + O(1/x))^2 \} = e + O \left(\frac{1}{x} \right) \quad (x \geq 1). \]

1.8 Show that
\[\exp \left\{ \sqrt{\log(1 + x)} \right\} = \exp \left\{ \sqrt{\log x} \right\} \left(1 + O \left(\frac{1}{x \sqrt{\log x}} \right) \right). \]

1.9 Prove that
\[\left(x + 1 + O \left(\frac{1}{x} \right) \right)^x = e^{x} \left(1 + O \left(\frac{1}{x} \right) \right) \quad (x \geq 1). \]

(This is an example of an equation in which both sides involve \(O \)-terms. The proper interpretation of this relation is this: If \(L(x) \) and \(R(x) \) denote, respectively, the expressions on the left and on the right of this relation, then any function satisfying \(f(x) = L(x) \) also satisfies the estimate \(f(x) = R(x) \) (see Section 1.3.2).

1.10 **Ranges of constant order of magnitude.** When estimating integrals it is often helpful to know the “maximal” interval within which a function occurring in the integrand remains at the same order of magnitude. For example, if \(f(x) = \sqrt{\log x} \), then \(f(y) \approx f(x) \) holds in the interval \((\ast)\ x^{1/2} \leq y \leq x\), for all sufficiently large \(x \), and except for the value of the exponent \(1/2 \) (which could be replaced by any positive constant), the interval \((\ast)\) is maximal with this property. Find analogous “maximal” intervals of constant order of magnitude (i.e., intervals in which \(f(y) \approx f(x) \) holds) for the following functions:

(i) \(f(x) = \log \log x \).
(ii) \(f(x) = \exp((\log x)^{3/5}) \).
(iii) \(f(x) = x^x \).

1.11 **Best-possible constants.** In Examples 1.6 and 1.8 it was shown that, for any integer \(n \geq 2 \) and any positive real number \(p \),
\[\left(\sum_{i=1}^{n} a_i \right)^p \asymp_{n,p} \sum_{i=1}^{n} a_i^p \quad (a_1, a_2, \ldots, a_n > 0). \]

Let \(c_1(n, p) \) and \(c_2(n, p) \) denote the best-possible lower and upper bound constants in this estimate. Determine these “optimal” constants.
1.12 **Differentiation of O-estimates.** While O-estimates can be integrated provided the range of integration is contained in the range of validity of the estimate, in general such estimates cannot be differentiated. This problem illustrates a situation where, under certain additional conditions (namely, the monotonicity of the derivative), differentiation of a O-estimate is allowed.

Show that if \(f(x) \) satisfies \(f(x) = x^2 + O(x) \), and \(f \) is differentiable with nondecreasing derivative \(f'(x) \), then \(f'(x) = 2x + O(\sqrt{x}) \).

1.13 **Integration of o-estimates.** Let \(f(x) \) and \(g(x) \) be nonnegative functions that are defined for \(x \geq x_0 \) and integrable over any finite interval in \([x_0, \infty) \), and let \(F(x) = \int_{x_0}^{x} f(y)dy \) and \(G(x) = \int_{x_0}^{x} g(y)dy \) denote the integrals of \(f(x) \) and \(g(x) \), respectively. As pointed out in Section 1.3.1, while O’s can be “pulled out” of integrals, this is, in general, not true for o’s; that is, the relation (1) \(f(x) = o(g(x)) \) as \(x \to \infty \) does not imply (2) \(F(x) = o(G(x)) \) as \(x \to \infty \).

Show (by a rigorous \(\epsilon - x_0 \) argument) that the implication (1) \(\Rightarrow \) (2) does hold under the additional assumption that the integral \(\int_{x_0}^{\infty} g(y)dy \) diverges, i.e., that \(G(x) \to \infty \) as \(x \to \infty \).

1.14 **Estimates \(O_\epsilon(x^\epsilon) \).** In asymptotic analysis one often comes across functions that are of order \(O_\epsilon(x^\epsilon) \) for any fixed \(\epsilon > 0 \). A typical example is estimate \(\pi(x) = \text{Li}(x) + O_\epsilon(x^{1/2+\epsilon}) \), where \(\epsilon \) is an arbitrary positive number, which is the conjectured form of the prime number theorem and which is equivalent to the Riemann Hypothesis.

Show that such a family of estimates is equivalent to a single O-estimate. More precisely, show that \(f(x) \) satisfies an estimate of the form

\[
f(x) = O(\epsilon^\epsilon) \quad (x \geq x_0(\epsilon)),
\]

for any fixed positive number \(\epsilon \), if and only if there exists a function \(\epsilon(x) > 0 \) with \(\lim_{x \to \infty} \epsilon(x) = 0 \), such that \(f(x) \) satisfies the single estimate

\[
f(x) = O(\epsilon^{\epsilon(x)}) \quad (x \geq x_0),
\]

with a suitable \(x_0 \).