Binomial coefficients

- **Definition:** \(\binom{n}{r} = \frac{n!}{r!(n-r)!} \) (“\(n \) choose \(r \)”).
 (Here \(n = 1, 2, \ldots \) and \(r = 0, 1, \ldots, n \). Note that, by definition, \(0! = 1 \).)
- **Alternate definition:** \(\binom{n}{r} = \frac{n(n-1)\ldots(n-r+1)}{r!} \).
 (This version is convenient for hand-calculating binomial coefficients.)
- **Symmetry property:** \(\binom{n}{r} = \binom{n}{n-r} \).
- **Special cases:**
 \(\binom{n}{0} = \binom{n}{n} = 1 \), \(\binom{n}{1} = \binom{n}{n-1} = n \).
- **Binomial Theorem:** \((x+y)^n = \sum_{r=0}^{n} \binom{n}{r} x^r y^{n-r} \).
- **Combinatorial Interpretations:** \(\binom{n}{r} \) represents
 1. the number of ways to select \(r \) objects out of \(n \) given objects (“unordered samples without replacement”);
 2. the number of \(r \)-element subsets of an \(n \)-element set;
 3. the number of \(n \)-letter HT sequences with exactly \(r \) H’s and \(n-r \) T’s;
 4. the coefficient of \(x^r y^{n-r} \) when expanding \((x+y)^n \) and collecting terms.

Multinomial coefficients

- **Definition:** \(\binom{n}{n_1, n_2, \ldots, n_r} = \frac{n!}{n_1!n_2!\ldots n_r!} \).
 (Here \(n \) and \(n_1, \ldots, n_r \) are nonnegative integers subject to \(\ast \) \(n = n_1 + n_2 + \cdots + n_r \).)
- **Special cases:**
 Case \(r = 2 \):
 \(\binom{n}{n_1, n_2} = \binom{n}{n_1} = \binom{n}{n_2} \) (since \(n_1 + n_2 = n \), and so \(n_2 = n - n_1 \)).
 Case \(r = n, n_1 = \cdots = n_r = 1 \):
 \(\binom{n}{1, 1, \ldots, 1} = n! \).
- **Multinomial Theorem:** \((x_1 + \cdots + x_r)^n = \sum_{(\ast)} \binom{n}{n_1, n_2, \ldots, n_r} x_1^{n_1} \ldots x_r^{n_r} \), where
 the sum is taken over all tuples \((n_1, \ldots, n_r) \) of nonnegative integers that add up to \(n \)
 (i.e., satisfy condition \(\ast \) above).
- **Combinatorial Interpretations:** \(\binom{n}{n_1, n_2, \ldots, n_r} \) represents
 1. the number of ways to split \(n \) distinct objects into \(r \) distinct groups, of sizes \(n_1, \ldots, n_r \), respectively. (In the case \(n_1 = \cdots = n_r = 1 \) this is the number of ways to permute all \(n \) objects.)
 2. the number of \(n \)-letter words formed with \(r \) distinct letters, say, \(L_1, \ldots, L_r \), used \(n_1, \ldots, n_r \) times respectively.
 3. the coefficient of \(x_1^{n_1} \ldots x_r^{n_r} \) when expanding \((x_1 + \cdots + x_r)^n \) and collecting terms.