Problem 1
(True/false questions) For each of the following statements, say if it is true or false, and provide a brief justification for your claim. Credit on these questions is based on your justification. A simple true/false answer, without justification, or with an incorrect justification, won’t earn credit.

For true statements, a justification typically consists of citing and applying an appropriate theorem, if necessary stating why the cited theorem can be applied. Be specific; e.g., say “Since (453, 347) = 1, Euler’s Theorem with \(a = 453\) and \(b = 347\) applies and guarantees the existence of a solution ...” rather than something like “true by Euler’s Theorem”.

For false statements, usually a specific counterexample may be enough. Note, however, that a different strategy is required to disprove statements asserting something for infinitely many (rather than all) integers.

(i) There exist infinitely many prime numbers whose decimal representation ends in the digits 453.

Solution: **TRUE**

A positive integer \(n\) ends in the digits 453 if and only if \(n\) is of the form \((\ast) n = 1000q + 453, q = 0, 1, 2, \ldots\). Since (453, 1000) = 1, Dirichlet’s Theorem for primes in arithmetic progressions guarantees that there are infinitely many primes of the form \((\ast)\).

This is a variation on a hw problem (Chapter 1, Problem 84), which asked to show that there are infinitely many primes ending in \(k\) 1’s, for any \(k\).

(ii) There exist infinitely many solutions \(x, y \in \mathbb{Z}\) to the equation \(x^2 = 4y - 453\).

Solution: **FALSE**

The given equation implies \(x^2 \equiv -453 \equiv 3 \mod 4\). However, this is impossible, since for \(x \equiv 0, 1, 2, 3 \mod 4\), we have, respectively, \(x^2 \equiv 0^2, 1^2, 2^2, 3^2 \equiv 0, 1, 0, 1 \mod 4\), so \(x^2\) can only occupy the residue classes 0 or 1 modulo 4.

This is a simplified version of a homework problem (Chapter 1, Problem 35), which asked to construct 4 integers with the same property.

(iii) If \(n\) is an integer \(\geq 2\) satisfying \((n - 1)! \equiv -1 \mod n\), then \(n\) is prime.

Solution: **TRUE**

This is the converse to Wilson’s theorem.

(iv) If \(a, b, c\) are positive integers satisfying \((a, b) > 1\), \((a, c) > 1\), and \((b, c) > 1\), then \((a, b, c) > 1\).

Solution: **FALSE**

A counterexample is given by \(a = 2 \cdot 3, b = 3 \cdot 5, \text{ and } c = 2 \cdot 5\): With this choice \((a, b) = 3, (a, c) = 2, (b, c) = 5\), but \((a, b, c) = 1\).

This is a simplified version of a homework problem which asked to show that 2\(^m\) \(-\) 1 | 2\(^n\) \(-\) 1 if \(m \mid n\).

Problem 2
(Short computations) Evaluate each of the following quantities. Show work!

(i) The last decimal digit of 7\(^{453}\).

Solution: The last decimal digit of a positive integer \(n\) is the least nonnegative residue of \(n\) modulo 10. Since (7, 10) = 1 and \(\phi(10) = 4\), we have, by Euler’s theorem, \(7^4 = 7^{\phi(10)} \equiv 1 \mod 10\). Thus, \(7^{453} = 7^{4 \cdot 113 + 1} = (7^4)^{113} \cdot 7^1 \equiv 7 \mod 10\),

so 7 is the last digit of 7\(^{453}\).

(ii) The greatest common divisor of 3\(^{453}\) \(-\) 1 and 3\(^{151}\) \(-\) 1.

Solution: Note that

\[3^{151} \equiv 1 \mod 3^{151} - 1,\]
\[3^{453} = (3^{151})^3 \equiv 1^3 = 1 \mod 3^{151} - 1.\]

Thus \(3^{151} - 1 | 3^{453} - 1\), and so \((3^{453} - 1, 3^{151} - 1) = 3^{151} - 1\).

The same argument came up in a recent homework problem which asked to show that \(2^m - 1 | 2^n - 1 \text{ if } m \mid n\).

(iii) The number of positive integers \(\leq 18,000\) (= 2\(^3\)3\(^2\)5\(^3\)) that are divisible by each of the numbers 8, 9, 10, 12.
Math 453, Section X13
Exam 1 Solutions
Spring 2008

Solution: We use the fact that divisibility by each of a set of given numbers is equivalent to divisibility by the least common multiple of these numbers. Now,

\[[8, 9, 10, 12] = [2^3, 3^2, 2 \cdot 5, 2^2 \cdot 3] = 2^3 \cdot 3^2 \cdot 5 = 360, \]

and the number of positive integers \(\leq 18,000 \) divisible by 360 is 18,000/360 = 50.

[Note: The above solution was the intended interpretation of the problem. Some students interpreted the problem as being four questions, one for each of the divisors 8, 9, 10, 12; full credit was given for a correct solution under this interpretation.]

(iv) The least nonnegative residue of 50 \cdot 50! modulo 53. (Hint: What is 2 \cdot 50! modulo 53?)

Solution: Since 53 is prime, we have by Wilson’s theorem

\[-1 \equiv 52! = 50!(51)(52) \equiv 50!(-2)(-1) = 2 \cdot 50! \mod 53.\]

Multiplying by 25, we get 50 \cdot 50! \equiv 25(-1) = -25 \equiv 28 \mod 53, so 28 is the least nonnegative residue of 50 \cdot 50! mod 53.

[The underlying argument here is the same as in a homework problem (Chapter 2, Problem 43), which asked to compute 2 \cdot (p – 3)! mod p when p is prime. (Hence the hint to consider first 2 \cdot 50! mod 53.)]

Problem 3
(Short proofs)

(i) Prove that 453 \cdot 347^n + 408^{n+1} is divisible by 5 for all odd positive integers n.

Solution: The assertion is equivalent to 453 \cdot 347^n + 408^{n+1} \equiv 0 \mod 5, for all odd n \in \mathbb{N}. Reducing everything modulo 5, we get

\[453 \cdot 347^n + 408^{n+1} \equiv 3 \cdot 2^n + 3^{n+1} \equiv 3 \cdot 2^n + (-2)^{n+1} \mod 5 \]

For n odd, we have (-2)^{n+1} = 2^{n+1}, so the above becomes 3 \cdot 2^n + 2^{n+1} = 5 \cdot 2^n \equiv 0 \mod 5, which proves the claim.

(ii) Using only the definition of divisibility (i.e., without appealing to any of the theorems, propositions, properties, etc., about divisibility that you might know), prove the following statement:

Let a, b, c, d \in \mathbb{Z}. If a \mid b and c \mid d, then ac \mid bd.

Solution: Let a, b, c, d \in \mathbb{Z}, and suppose a \mid b and c \mid d. By the definition of divisibility, this means that there exist x, y \in \mathbb{Z} such that b = ax and d = cy. Hence (*) bd = (ax)(cy) = (ac)(xy). Since x and y are integers, so is xy, and (*) therefore implies that ac \mid bd, with xy as the “multiplier”.

Problem 4
Determine all incongruent solutions of the congruence 408x \equiv 6 \mod 453, or show that no solutions exist.

Solution: Using the factorizations 453 = 3 \cdot 151, 408 = 2^3 \cdot 17, we get (408, 453) = 3, and since 3 \mid 6, the congruence has a solution. Moreover, there are exactly 3 incongruent solutions modulo 453.

To find a particular solution, we apply the Euclidean algorithm to the pair (453, 408):

\[453 = 408 \cdot 1 + 45 \]
\[408 = 45 \cdot 9 + 3 \]
\[45 = 3 \cdot 15. \]

Working backwards, we get

\[3 = 408 - 45 \cdot 9 \]
\[= 408 - (453 - 408 \cdot 1) \cdot 9 \]
\[= 408 \cdot 10 + 453 \cdot (-8). \]

Thus, 408 \cdot 10 \equiv 3 \mod 453. Multiplying by 2, we get 408 \cdot 20 \equiv 6 \mod 453. Thus \(x_0 = 20 \) is one solution to the given congruence. Adding to this solution \(k(453/3) = 151k \), for \(k = 0, 1, 2 \) gives all incongruent solutions modulo 453: \(20, 171, 322 \).