Problems on general probability rules, independence, conditional probability

1. Assuming A, B, C are mutually independent, with $P(A) = P(B) = P(C) = 0.1$, compute:

 (a) $P(A \cup B)$ \textbf{Solution:} $P(A) + P(B) - P(A)P(B) = 0.19$

 (b) $P(A \cup B \cup C)$
 \textbf{Solution:} By formula the formula for $P(A \cup B \cup C)$ and indep., $P(A \cup B \cup C) = 3 \cdot 0.1 - 3 \cdot 0.1^2 + 0.1^3 = 0.271$

 (c) $P(A \setminus (B \cup C))$
 \textbf{Solution:} $P(A) - P(A \cap B) - P(A \cap C) + P(A \cap B \cap C) = 0.081$

2. Given that $P(A) = 0.3$, $P(A|B) = 0.4$, and $P(B) = 0.5$, compute:

 (a) $P(A \cap B)$ \textbf{Solution:} $P(A|B)P(B) = 0.4 \cdot 0.5 = 0.2$

 (b) $P(B|A)$ \textbf{Solution:} $P(B \cap A)/P(A) = 0.2/0.3 = 0.666$

 (c) $P(A'|B)$ \textbf{Solution:} $P(A' \cap B)/P(B) = ((P(B) - P(A \cap B))/P(B) = 0.6$

 (d) $P(A|B')$ \textbf{Solution:} $P(A \cap B')/P(B') = (P(A) - P(A \cap B))/(1 - P(B)) = 0.2$

3. Assume A and B are independent events with $P(A) = 0.2$ and $P(B) = 0.3$. Let C be the event that \textbf{at least one} of A or B occurs, and let D be the event that \textbf{exactly one} of A or B occurs.

 (a) Find $P(C)$.
 \textbf{Solution:} The event C is just the union of A and B, so $P(C) = P(A \cup B) = P(A) + P(B) - P(A)P(B) = 0.44$
(b) Find \(P(D) \).

Solution: Drawing a Venn diagram, we see that \(D \) consists of the union of \(A \) and \(B \) minus the overlap. Thus, \(P(D) = P(A \cup B \setminus A \cap B) = P(A \cup B) - P(A)P(B) = 0.38 \)

(c) Find \(P(A|D) \) and \(P(D|A) \).

Solution: \(P(A|D) = P(A \cap D)/P(D) = P(A \setminus A \cap B)/P(D) = (0.2 - 0.2 \cdot 0.3)/0.38 = \frac{7}{19} \) \(P(D|A) = P(A \setminus A \cap B)/P(A) = (0.2 - 0.2 \cdot 0.5)/0.2 = 0.7 \)

(d) Determine whether \(A \) and \(D \) are independent.

Solution: \(A \) and \(D \) are not independent since by the previous part, \(P(A|D) \neq P(A) \).

Alternative solution: From above, \(P(A \cap D) = 0.14, P(A)P(D) = 0.2 \cdot 0.38 = 0.076 \), so \(P(A \cap D) \neq P(A)P(D) \), and therefore \(A \) and \(D \) are not independent.

4. Given that \(P(A \cup B) = 0.7 \) and \(P(A \cup B') = 0.9 \), find \(P(A) \).

Solution: By De Morgan’s law, \(P(A' \cap B') = P((A \cup B)') = 1 - P(A \cup B) = 1 - 0.7 = 0.3 \) and similarly \(P(A' \cap B) = 1 - P(A \cup B') = 1 - 0.9 = 0.1 \). Thus, \(P(A') = P(A' \cap B') + P(A' \cap B) = 0.3 + 0.1 = 0.4 \), so \(P(A) = 1 - 0.4 = 0.6 \).

5. Given that \(A \) and \(B \) are independent with \(P(A) = 2P(B) \) and \(P(A \cap B) = 0.15 \), find \(P(A' \cap B') \).

Solution: By independence and the given data, \(0.15 = P(A \cap B) = P(A)P(B) = 2P(B)^2 \), so \(P(B) = \sqrt{0.075} = 0.273 \), and \(P(A) = 2P(B) = 0.546 \). Hence \(P(A' \cap B') = P(A')P(B') = (1 - 0.546)(1 - 0.273) = 0.33 \). (Note the use of the “independence of complements” property here.)

6. Given that \(A \) and \(B \) are independent with \(P(A \cup B) = 0.8 \) and \(P(B') = 0.3 \), find \(P(A) \).

Solution: We have \(P(B) = 1 - 0.3 = 0.7 \) and \(0.8 = P(A) + P(B) - P(A \cap B) = P(A) + P(B) - P(A)P(B) = P(A)(1 - 0.7) + 0.7 \). Solving for \(P(A) \) gives \(P(A) = (0.8 - 0.7)/0.3 = 0.33 \).
7. Given that \(P(A) = 0.2, P(B) = 0.7, \) and \(P(A|B) = 0.15, \) find \(P(A' \cap B'). \)

Solution: By De Morgan’s Law,
\[P(A' \cap B') = P((A \cup B)') = 1 - P(A \cup B) = 1 - P(A) - P(B) + P(A \cap B). \]
Using the given values of \(P(A) \) and \(P(B) \) and \(P(A \cap B) = P(A|B)P(B) = 0.15 \cdot 0.7 = 0.105 \) (the multiplication formula), we get
\[P(A' \cap B') = 1 - 0.2 - 0.7 + 0.105 = 0.205. \]

8. Given \(P(A) = 0.6, P(B) = 0.7, P(C) = 0.8, P(A \cap B) = 0.3, P(A \cap C) = 0.4, P(B \cap C) = 0.5, P(A \cap B \cap C) = 0.2, \) find \(P(A' \cap B' \cap C'). \)

Solution: If \(A', B' \) and \(C' \) were independent, we could apply the product formula, and the answer would be immediate, but we don’t know this (in fact, they are not). However, from a Venn diagram we see that
\[P(A \cap B' \cap C') = P(A) - P(A \cap B) - P(A \cap C) + P(A \cap B \cap C). \]
Inserting the given values, we get
\[0.6 - 0.3 - 0.4 + 0.2 = 0.1 \] as answer.