Practice Problems: Proofs and Counterexamples involving Functions

The following problems serve two goals: (1) to practice proof writing skills in the context of abstract function properties; and (2) to develop an intuition, and “feel” for properties like injective, increasing, bounded, etc., so that you can easily come up with a “guess” whether a statement is likely true, and find counterexamples for false statements. None of the problems is particularly difficult: The proofs for true statements are all quite routine, and counterexamples for false statements are not hard to discover once you have a good intuitive understanding of the definitions. Try to master them all!

1. **Proofs involving surjective and injective properties of general functions**: Let $f : A \to B$ and $g : B \to C$ be functions, and let $h = g \circ f$ be the composition of g and f. For each of the following statements, either give a formal proof or counterexample. (A counterexample means a specific example of sets A, B, C and functions $f : A \to B$, and $g : B \to C$, for which the statement is false.)

 (a) If f and g are injective, then h is injective.
 (b) If f and g are surjective, then h is surjective.
 (c) If h is injective, then f is injective.
 (d) If h is injective, then g is injective.
 (e) If h is surjective, then f is surjective.
 (f) If h is surjective, then g is surjective.

Sol:

(a): If f and g are injective, then h is injective.

Proof:

Suppose f and g are injective.

We seek to show that $h = g \circ f$ is injective.

Let $x, y \in A$ be given and assume $h(x) = h(y)$.

Since $h = g \circ f$, the last equation can written as $g(f(x)) = g(f(y))$.

Since g is injective, this implies $f(x) = f(y)$.

Since f is injective, it follows that $x = y$.

Summarizing, we have shown that, for any $x, y \in A$, $h(x) = h(y)$ implies $x = y$.

Therefore, h is injective.

(b): If f and g are surjective, then h is surjective.

Proof:

Suppose f and g are surjective.

We seek to show that $h = g \circ f$ is surjective.

Let $c \in C$ be given.

Since $g : B \to C$ is surjective and $c \in C$, there exists $b \in B$ such that $g(b) = c$.

Since $f : A \to B$ is surjective and $b \in B$, there exists $a \in A$ such that $f(a) = b$.

Combining these equations, we get $c = g(b) = g(f(a)) = h(a)$.

Summarizing, we have shown that, for any $c \in C$, there exists $a \in A$ such that $h(a) = c$.

Therefore, h is surjective.

(c): If h is injective, then f is injective. **TRUE.**

Proof:

...
Suppose \(h \) is injective.
We seek to show that \(f \) is injective.
Let \(x, y \in A \) be given and assume \(f(x) = f(y) \).
Then \(g(f(x)) = g(f(y)) \).
Since \(h = g \circ f \), this can be written as \(h(x) = h(y) \).
Since \(h \) is injective, the latter equation implies \(x = y \).
Summarizing, we have shown that for all \(x, y \in A \), \(f(x) = f(y) \) implies \(x = y \).
Therefore \(f \) is injective.

(d): If \(h \) is injective, then \(g \) is injective. FALSE.
Counterexample: Let \(A = \{1\} \), \(B = \mathbb{R} \), \(C = \{1\} \), and define \(f : \{1\} \to \mathbb{R} \) by \(f(1) = 1 \), and \(g : \mathbb{R} \to \{1\} \) by \(g(x) = 1 \) for all \(x \in \mathbb{R} \). With this choice, \(h \) is a function from \(\{1\} \) to \(\{1\} \), defined by \(h(1) = g(f(1)) = g(1) = 1 \). The function \(h \) is injective (since it maps the single element 1 in \(A \) to the single element 1 in \(C \)), but \(g \) is not (since it maps every real number to 1).

(e): If \(h \) is surjective, then \(f \) is surjective. FALSE.
Counterexample: The counterexample constructed in the previous part is also a counterexample here: The function \(h : \{1\} \to \{1\} \) is a bijection and thus surjective, but \(f : \{1\} \to \mathbb{R} \) is not surjective (its only value in \(\mathbb{R} \) is the number 1).

(f): If \(h \) is surjective, then \(g \) is surjective. TRUE.
Proof:
Suppose \(h \) is surjective.
We seek to show that \(g \) is surjective.
Let \(z \in C \) be given.
Since \(h \) is surjective, there exists an \(x \in A \) such that \(h(x) = z \).
Let \(y = f(x) \).
Then \(g(y) = g(f(x)) = h(x) = z \).
Also, since \(f \) is a function from \(A \) to \(B \), we have \(y = f(x) \in B \).
Summarizing, we have shown that, for any element \(z \in C \) there exists an element \(y \in B \) such that \(g(y) = z \).
Therefore \(g \) is surjective.

2. Proofs involving bounded functions: Let \(f \) and \(g \) be functions from \(\mathbb{R} \) to \(\mathbb{R} \). For each of the following statements, either give a formal proof or a counterexample. (Here \(f + g \) is the function defined by \((f + g)(x) = f(x) + g(x)\) for all \(x \in \mathbb{R} \), \(fg \) is defined analogously.)

(a) If \(f \) and \(g \) are bounded, then so is \(f + g \).
(b) If \(f \) and \(g \) are bounded, then so is \(fg \).
(c) If \(f + g \) is bounded, then so are \(f \) and \(g \).
(d) If \(fg \) is bounded, then so are \(f \) and \(g \).
(e) If \(f \) is bounded, then so is the function \(e^f \).

Sol: (a), (b), and (e) are true, while (c) and (d) are false. We will give a proof for (a), and counterexamples for (c) and (d). The other assertions can be proved similarly.

(a): If \(f \) and \(g \) are bounded, then so is \(f + g \). **TRUE.**

Proof: Suppose \(f \) and \(g \) are bounded. By the definition of a bounded function, this means that there are constants \(M_1, M_2 \in \mathbb{R} \) such that

\[
(1) \quad |f(x)| \leq M_1 \quad \text{for all } x \in \mathbb{R},
\]

\[
(2) \quad |g(x)| \leq M_2 \quad \text{for all } x \in \mathbb{R}.
\]

It follows that, for all \(x \in \mathbb{R} \),

\[
|(f + g)(x)| = |f(x) + g(x)| \quad \text{(by definition of } f + g) \leq |f(x)| + |g(x)| \quad \text{(by triangle inequality } |a + b| \leq |a| + |b|) \leq M_1 + M_2 \quad \text{(by (1) and (2)).}
\]

Thus, \(|(f + g)(x)| \leq M_1 + M_2 \) for all \(x \in \mathbb{R} \). Therefore, \(f + g \) is bounded, with \(M = M_1 + M_2 \) as a bound.

(c): If \(f + g \) is bounded, then so are \(f \) and \(g \). **FALSE.**

Counterexample: Let \(f \) and \(g \) be defined by \(f(x) = x \) and \(g(x) = -x \) for all \(x \). Then \((f + g)(x) = f(x) + g(x) = x + (-x) = 0 \) for all \(x \), so \(f + g \) is bounded, while neither \(f \) nor \(g \) are bounded.

(d): If \(fg \) is bounded, then so are \(f \) and \(g \). **FALSE.**

Counterexample: Let \(f \) and \(g \) be defined by \(f(x) = x \) and \(g(x) = 0 \) for all \(x \in \mathbb{R} \). Then \((fg)(x) = f(x)g(x) = x \cdot 0 = 0 \) for all \(x \), so \(fg \) is bounded, but \(f \) is not bounded.

(e): If \(f \) is bounded, then so is the function \(e^f \). **TRUE.**

Proof: Suppose \(f \) is bounded. Then there exists \(M \in \mathbb{R} \) such that \(|f(x)| \leq M \) for all \(x \in \mathbb{R} \). Therefore \(-M \leq f(x) \leq M \) for all \(x \in \mathbb{R} \). By the properties of the exponential function it follows that \(e^{-M} \leq e^{f(x)} \leq e^M \) for all \(x \in \mathbb{R} \). Hence \(0 < e^{f(x)} \leq e^M \) for all \(x \in \mathbb{R} \). Thus the function \(e^{f(x)} \) is bounded with bound \(M_1 = e^M \).

3. **Relations between various properties:** Let \(f \) be a function from \(\mathbb{R} \) to \(\mathbb{R} \). For each of the following statements, either give a formal proof or a counterexample.

(a) If \(f \) is surjective, then \(f \) is unbounded.
(b) If \(f \) is unbounded, then \(f \) is surjective.
(c) If \(f \) is increasing, then \(f \) is injective.
(d) If \(f \) is increasing, then \(f \) has an inverse.

Sol: (a): If \(f \) is surjective, then \(f \) is unbounded. **TRUE.**

Proof:
We prove the given statement by proving the contrapositive of this statement, namely:

(∗) If \(f \) is a bounded function from \(\mathbb{R} \) to \(\mathbb{R} \), then \(f \) is not surjective.

Assume \(f \) is a bounded function from \(\mathbb{R} \) to \(\mathbb{R} \).
By the definition of a bounded function, there exists \(M \in \mathbb{R} \) such that \(|f(x)| \leq M \) for all \(x \in \mathbb{R} \).
Let \(y = M + 1 \).
Then, for all \(x \in \mathbb{R} \), \(|f(x)| \leq M < M + 1 = y \), so \(|f(x)| < y \) and therefore \(f(x) \neq y \).
Thus, \(f(x) \) does not take on the value \(y \), and hence is not surjective.
This proves the statement (∗).
By contraposition, this is equivalent to the given statement.

(b): If \(f \) is unbounded, then \(f \) is surjective. FALSE.

Counterexample: \(f(x) = x^2 \). This function is unbounded, but not surjective since it does not take on negative values.

(c): If \(f \) is increasing, then \(f \) is injective. TRUE.

Proof.

Suppose \(f : \mathbb{R} \to \mathbb{R} \) is increasing.
Let \(x, y \in \mathbb{R} \) be given such that \(x \neq y \).
Then \(x < y \) or \(x > y \).
If \(x < y \), then \(f(x) < f(y) \) by the definition of an increasing function. Similarly, if \(x > y \), then \(f(y) > f(x) \).
Thus, in either case, we have \(f(x) \neq f(y) \).
Hence \(x \neq y \) implies \(f(x) \neq f(y) \).
Therefore \(f \) is injective.

(d): If \(f \) is increasing, then \(f \) has an inverse. FALSE.

Counterexample: \(f(x) = e^x \). This is a function from \(\mathbb{R} \) to \(\mathbb{R} \). It is increasing, but not surjective since \(f(x) = e^x > 0 \) for all \(x \), and so \(f(x) \) does not take on negative values. Hence \(f \) is not a bijection and thus does not have an inverse.