Worksheet: Common Errors in Writing up Induction Proofs

- **Undeclared/unquantified induction variable:** Starting out an induction step by saying “Suppose $P(n)$ is true for $n = k$”, without saying what k is, what restrictions there have to be on k (e.g., $k \geq 2$), would make this step incomplete. There are many examples of “false” induction proofs that are due to errors of this type.

- **Not stating, explicitly and precisely, the statement/formula that one seeks to prove.** For example, using language like “suppose it is true for $n = k$”, or “suppose $P(k)$”, without explicitly and precisely stating what “it” or “$P(k)$” means, would be wrong.

- **Induction hypothesis not referenced.** The most crucial part of any induction proof is the place where the induction hypothesis (e.g., the case $n = k$ of $P(n)$, or the cases $n = k$ and $n = k - 1$, etc) is being used. This is the place that can make or break an induction argument, and an error there can have disastrous consequences. **Always clearly state, at the appropriate place in the induction step, where the induction hypothesis is being used.**

- **Insufficient/inappropriate base cases:** The base case(s) must be sufficient to “kick-start” the chain reaction that the induction proof represents. For example, an induction in which the $k + 1$ case depends on the cases k and $k - 1$ requires checking two consecutive n-values in the base step.

- **Base cases and induction step don’t match up:** The first case of the induction step (i.e., the first k-value for which the induction step is claimed) must match up with the base case(s), so as not to leave a gap in the chain reaction. There are numerous examples of “false” induction proofs that result from carelessness in this regard.

Practice Problems

In each of the following examples, something is wrong with the set-up or write-up of the induction proof. Find the error and try to correct it.

1. **Example 1.**
 - **Base step:** $n = 6$.
 - **Induction step:** Let $k \in \mathbb{N}$ be given and assume (\ast) is true for $n = k$.

2. **Example 2.**
 - **Base step:** $n = 1$ and $n = 2$.
 - **Induction step:** Let $k \in \mathbb{N}$ with $k \geq 3$ be given and assume (\ast) is true for $n = k$ and $n = k - 1$.

3. **Example 3.**
 - **Base step:** $n = 1$ and $n = 2$.
 - **Induction step:** Assume (\ast) is true for $n = k$ and $n = k - 1$. Then ...

4. **Example 4.**
 - **Base step:** $n = 1$ and $n = 2$.
 - **Induction step:** Let $k \in \mathbb{N}$ be given and assume (\ast) is true for $n = k$ and $n = k - 1$.