Number Theory: Summary of Definitions and Theorems

Divisibility:
Given arbitrary integers a, b, with $a \neq 0$, we say that “a divides b” if there exists $k \in \mathbb{Z}$ such that $b = ka$. If a divides b, we say b is divisible by a, and we call a a divisor (or factor) of b, and b a multiple of a.
We write $a \mid b$ for “a divides b”, and $a \nmid b$ for its negation, “a does not divide b”.
Note: The “divisor” a in this definition can be negative, but must be nonzero; divisibility by 0 is not defined.

Congruences:
Given arbitrary (positive, zero, or negative) integers a, b, and a modulus m, we say (“a is congruent to b modulo m”), and write $[a \equiv b \mod m]$ if $a = b + km$ for some integer k, or equivalently, if $m \mid a - b$.
Note: The modulus m is an essential part of the definition. Make sure to always specify the modulus; saying “a is congruent to b”, or writing “$a \equiv b$”, without specifying a modulus makes no sense.

Properties of congruences:
What makes congruences so useful is that, to a large extent, they can be manipulated like ordinary equations. Congruences to the same modulus can be added, multiplied, and taken to a fixed positive integral power; i.e., for any $a, b, c, d \in \mathbb{Z}$ and $m \in \mathbb{N}$ we have:

- **Sums:** If $a \equiv b \mod m$ and $c \equiv d \mod m$, then $a + c \equiv b + d \mod m$.
- **Products:** If $a \equiv b \mod m$ and $c \equiv d \mod m$, then $ac \equiv bd \mod m$.
- **Powers:** If $a \equiv b \mod m$ and $k \in \mathbb{N}$, then $a^k \equiv b^k \mod m$.
- **Polynomial values:** If $a \equiv b \mod m$ and $P(x)$ is a polynomial with integer coefficients, then $P(a) \equiv P(b) \mod m$.

Primes and composite numbers:
An integer n with $n \geq 2$ is called a prime if its only positive divisors are 1 and n, and composite otherwise. Equivalently, n is composite if it be factored in the form $n = ab$ with integers a, b satisfying $1 < a, b < n$.
Note: The natural number 1 is considered neither prime nor composite. Negative numbers and 0 are not classified as prime or composite either.

Fundamental Theorem of Arithmetic:

| Every integer $n \geq 2$ has a unique factorization into primes. |

That is, every integer $n \geq 2$ can be represented in the form $n = p_1p_2\ldots p_r$, where the p_i are primes (not necessarily distinct). Moreover, this representation is unique except for the ordering of the primes p_i.

Euclid’s Theorem:

| There are infinitely many prime numbers. |

This is perhaps the most famous theorem in Number Theory. Euclid’s proof, given below, is a classic, one of the most memorable proofs in all of mathematics, and a wonderful illustration of the method of contradiction. This is a proof that is worth remembering for the rest of your life!

Proof of Euclid’s Theorem: We use contradiction. Assume there are only finitely many prime numbers, say p_1, p_2, \ldots, p_n.
Let $N = p_1p_2\ldots p_n + 1$. Then N is an integer ≥ 2, so by the Fundamental Theorem of Arithmetic it can be written as a product of one or more prime numbers. Since, by our assumption, p_1, \ldots, p_n are all the primes, at least one of these, say p_n, must appear in the factorization of N, and so $p_n \mid N$. On the other hand, $p_n \mid p_1p_2\ldots p_n = N - 1$. Since $d \mid a$ and $d \mid b$ implies $d \mid a - b$, it follows that $p_1 \mid N - (N - 1) = 1$, which is impossible, since $p_1 \geq 2$. This contradiction proves the claim.

Further Resources:
In the text this material can be found in Chapters 6 and 7. A fantastic resource on everything about primes is the Prime Pages website, http://primes.utm.edu.