RULES: Same as always: Staple this sheet to the assignment, do the problems in order, write legibly, show all work, and turn in the assignment in class by the above deadline. Grading: 20 points total, broken down as follows:

- **Presentation/effect:** 5 points
- **Graded problems:** 15 points

Puzzle of the Week: Here is another game-type puzzle involving a “magic number” that you can try on a friend. It is not particularly difficult, it is not hard to guess a formula for magic number, and proving that this number has the desired “magic” properties is not that hard either.

#1 A magic matrix. Consider the \(n \times n \) matrix obtained by filling the rows of this matrix with the numbers 1, 2, \ldots, \(n^2 \), so that the first row consists of the numbers 1, 2, \ldots, \(n \), the second row of the numbers \(n + 1, n + 2, \ldots, n^2 \), and so on. Now choose \(n \) entries in this matrix such that each row and each column contains exactly one of these entries, and add these \(n \) entries. Prove that, no matter how these \(n \) entries are chosen, for a given \(n \)-value their sum is always the same, and equal to a certain magic number \(M_n \).

For example, in the case \(n = 4 \), here are two possible such choices of these 4 entries:

\[
\begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{bmatrix},
\begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{bmatrix}.
\]

The sum of the boxed entries is 3 + 8 + 9 + 14 = 34 for the matrix on the left, and 2 + 5 + 12 + 15 = 34, for the matrix on the right. Trying out more examples one always obtains 34 as sum of the chosen entries, suggesting that \(M_4 = 34 \) is the “magic number” for the case \(n = 4 \). Your task is to prove this rigorously, for matrices of any dimension.

Proof practice with the \(\epsilon \)-definition of a limit. For the following problems, give formal proofs using the definition of a limit. These proofs should be done directly from the “\(\epsilon - N \)” definition of the limit of a sequence, and not use any of the properties, lemmas, propositions, etc. of limits established in the book or in class.

#2 13.25. Using the \(\epsilon \)-definition of a limit, prove that \(\lim_{n \to \infty} \sqrt{1 + \frac{1}{n}} = 1 \).

#3 Using the \(\epsilon \)-definition of a limit, prove that \(\lim_{n \to \infty} \frac{3n^3 + 2n + 1}{n^3 + 1} = 3 \).

#4 13.11(a). Using the \(\epsilon \)-definition of a limit, prove that if the limits \(L = \lim_{n \to \infty} a_n \) and \(M = \lim_{n \to \infty} b_n \) both exist and \(L < M \), then there exists \(N \in \mathbb{N} \) such that \(n \geq N \) implies \(a_n < b_n \).

#5 13.26. Using the \(\epsilon \)-definition of a limit, prove that if \(\lim_{n \to \infty} a_n = 1 \) and \(a_n > -1 \) for all \(n \in \mathbb{N} \), then \(\lim_{n \to \infty} 1/(1 + a_n) = 1/2 \).

Applications of Monotone Convergence. For the following problems, use the Monotone Convergence Theorem. The main task is to show that the given sequence satisfies the two conditions of the theorem (bounded and monotone).

#6 13.29. Let \(x_n = \frac{1 + n}{1 + 2n} \). Using the Monotone Convergence Theorem, prove that \(\lim_{n \to \infty} x_n \) exists.

#7 13.30. Let \(x_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} \). Using the Monotone Convergence Theorem, prove that \(\lim_{n \to \infty} x_n \) exists. (Hint: Note that \(x_n \) is a sum of \(n \) terms, so \(x_{n+1} \) has one more term than \(x_n \).)