Banach lattice methods for proving axiomatizability of Banach spaces

C. Ward Henson
University of Illinois
(work in progress)
(a collaboration with Yves Raynaud)

November, 2015
Analysis Seminar, Univ. Paris 6 (Nov. 12)
Model Theory Seminar, UC Berkeley (Nov. 18)
Banach spaces and Banach lattices over \mathbb{R} are the only structures considered here.

They are treated model-theoretically using continuous first order logic applied to appropriate structures on their unit balls.

Main Problem:

Given an axiomatizable class C of Banach lattices, when is the class C^B of their underlying Banach spaces axiomatizable?

Rationale: there were many classes of Banach lattices known to be axiomatizable, but not many such classes of Banach spaces. A systematic method was lacking.
To directly apply ideas and tools from model theory to a class S of structures, you need to know that S is axiomatizable.

Otherwise, you could do something like: replace S by the smallest axiomatizable class containing S (call it S^*), and then

1. apply model theory to S^*
2. understand the relation between S and S^*.

$S^* = \text{Mod}(\text{Th}(S))$.

S^* is the class of all structures that are ultraroots of ultraproducts of a family from S.
Some axiomatizable classes of Banach lattices

- L_p-spaces, $1 \leq p < \infty$, p fixed (old, easy).

- $C(K)$-spaces, M-spaces, some other classes of M-spaces (old, easy).

- Nakano spaces, with essential range $\subseteq [r, s]$, $1 \leq r \leq s < \infty$, r, s fixed (Poitevin, 2006; Ben Yaacov, 2009).

- $BL_p L_q$-spaces, $1 \leq p, q < \infty$ fixed (WH, Raynaud, 2007).
Some axiomatizable classes of Banach spaces

- L_p-spaces, $1 \leq p < \infty$, p fixed. (WH, Moore; $L_{p,1^+}$-spaces)
- L_1-preduals (WH, Moore; $L_{\infty,1^+}$-spaces)
- $C(K)$-spaces, other classes of L_1-preduals. (Heinrich, 1981)

Recent work:
- Nakano spaces, with essential range $\subseteq [r, s]$, $1 \leq r \leq s < \infty$, r, s fixed, BUT with added restrictions $2 < r$ or $s < 2$ (Raynaud, new, using disjointness methods described here).
- BL_pL_q-spaces, $1 \leq p, q < \infty$ fixed, BUT with added restrictions $2 < p, q$ or $1 < p, q < 2$ or ... (Raynaud, new, same methods).
A Banach lattice is an **M-space** if it satisfies the condition:

\[x, y \text{ disjoint} \implies \|x + y\| = \max(\|x\|, \|y\|) \]

This is a **negative example** for axiomatizability: The class of M-spaces is axiomatizable. However the class of Banach space reducts of M-spaces is *not* axiomatizable.

Work of WH, Heinrich, and Moore in the 1980s gave a Banach space \(E \) elementarily equivalent to \(c_0 \) such that \(E \) does not have any compatible lattice structure at all.
Signature for Banach spaces over reals

We take the signature for unit balls of Banach spaces to be
\(\mathcal{L}_{sp} = \{0, c_{r,s}, \hat{2}, \parallel \parallel \} \) where \(r, s \) range over rational scalars such that \(|r| + |s| \leq 1 \). This is a countable signature.

- 0 is a constant symbol.
- \(c_{r,s} \) are binary function symbols.
- \(\hat{2} \) is a unary function symbol.
 - Interpret \(c_{r,s}(x, y) \) as \(rx + sy \).
 - Interpret \(\hat{2}(x) \) as \(2x \) if \(\|x\| \leq \frac{1}{2} \), as \(x/\|x\| \) otherwise.
- \(\parallel \parallel \) is a unary predicate symbol.
 - the functions and predicate are 1-Lipschitz (2-Lipschitz for \(\hat{2} \)) in each variable.

There is also a predicate symbol \(d \) for the underlying metric; it is treated the same as \(= \) in classical signatures.
We take the signature for unit balls of Banach lattices to be $\mathcal{L}_{latt} = \mathcal{L}_{sp} \cup \{|\cdot|\}$.

- $|\cdot|$ is a unary function symbol, interpreted as the absolute value on the unit ball of any Banach lattice; it is 1-Lipschitz.
- Suitably scaled versions of the other Banach lattice operations can be explicitly defined by terms using $\|\cdot\|$ and the allowed linear operations. For example:

$$\frac{1}{2}(x \vee y) = \frac{1}{2}\left(\frac{1}{2}(x + y) + \frac{1}{2}(x - y)\right)$$

$$\frac{1}{2}(x \wedge y) = \frac{1}{2}\left(\frac{1}{2}(x + y) - \frac{1}{2}(x - y)\right)$$

$$x_+ = \frac{1}{2}(|x| + x) \quad x_- = \frac{1}{2}(|x| - x)$$
The classes of (unit balls) of Banach spaces and of Banach lattices (as structures for the signatures \mathcal{L}_{sp} and \mathcal{L}_{latt}, respectively) are axiomatizable, and the axioms can be taken to be universal. (For example, both classes are closed under ultraproducts and substructures.)

Notation

- T_{sp} is a universal \mathcal{L}_{sp}-theory axiomatizing the class of all (unit balls of) Banach spaces.
- T_{latt} is a universal \mathcal{L}_{latt}-theory axiomatizing the class of all (unit balls of) Banach lattices.
Examples of L_{latt}-sentences:

- $\sigma := \sup_x \|x\|^p - (\|x_+\|^p + \|x_-\|^p)$
- $T_{latt} \cup \{\sigma = 0\}$ axiomatizes L_p Banach lattices.

- $\psi := \sup_x \|x\| - \max(\|x_+\|, \|x_-\|)$
- $T_{latt} \cup \{\psi = 0\}$ axiomatizes M-spaces.

- $\tau := \inf_x \max (\|x\| - 1, \sup_y \|y\| - (|y| \wedge |x|))$
- $T_{latt} \cup \{\tau = 0\}$ axiomatizes Banach lattices with a strong order unit.

Note: some scaling is needed in σ and τ to make them syntactically correct.
X, Y, . . . are Banach lattices.
E, F, . . . are Banach spaces
B_X, B_E are the unit balls.

Definition

x, y ∈ X are disjoint if |x| ∧ |y| = 0; we write x ⊥ y.

D(X) = {(u, v) | u, v ∈ B_X and u ⊥ v}
A class C of Banach lattices has property DPA if for every $X, Y \in C$, every surjective linear isometry from X to Y is disjointness preserving. A Banach lattice X has DPA if the class $\{X\}$ has DPA.

Main Theorem (WH, strengthening a result of Raynaud)

Suppose C is an axiomatizable class of Banach lattices. If every member of C has DPA and is order continuous, then the class C^B of Banach space reducts of members of C is axiomatizable.

The proof uses results from Banach lattice theory (worked out by Raynaud) as well as definability results from model theory (noticed by WH). We discuss these next, in that order.
A band in X is a linear subspace $I \subseteq X$ such that
- $\{x \in X, y \in I, |x| \leq |y|\}$ imply $x \in I$. (I is an ideal.)
- $S \subseteq I, x = \sup S$ imply $x \in I$.

A band projection of X onto a band I is a projection P such that $0 \leq P(x) \leq x$ for all $x \geq 0$ in X. Such a projection is necessarily a lattice homomorphism, and $Id - P$ is a band projection onto the band orthogonal to I.

A sign-change operator on X is an operator $U : X \to X$ for which there exists a band projection P for which $U = 2P - Id$.

If U is a sign-change operator on X, then U is a surjective linear isometry and it is disjointness preserving.
Proposition (Raynaud)

Suppose $T : X \to Y$ is a linear isometry (into) that preserves disjointness. Then the map $|T| : X \to Y$ defined by

$$|T|(x) = |T(x_+)| - |T(x_-)|$$

is a linear lattice isometry. Further, if T is surjective or if Y is order complete, then there is a sign-change operator U on Y such that $T = U \circ |T|$.
Proposition (Raynaud)

A bounded linear operator $T : X \rightarrow Y$ preserves disjointness if and only if it preserves the lattice term $a(x, y) = (x_+ \land y_+) - (x_- \land y_-)$; that is, if we have $T(a(x, y)) = a(Tx, Ty)$ for all $x, y \in X$.

Proposition (Raynaud)

Assume X is order continuous. For any closed linear subspace E of X, the following are equivalent:
1. There is a sign-change operator U on X such that $U(E)$ is a closed vector sublattice of X.
2. The function $a(x, y)$ maps $E \times E$ into E.
Recall

Consider a theory T in continuous logic.

- A **definable predicate** for T is a uniform limit of formulas. (Uniform over all models \mathcal{M} of T and all elements of the model).

- Let $P(x)$ be a definable predicate for T. The zero set of P, which is the set $ZP^\mathcal{M} := \{x \in M^n \mid P^\mathcal{M}(x) = 0\}$ in each model \mathcal{M} of T, is a **definable set** for T if there is a definable predicate Q for T such that

 $$Q^\mathcal{M}(x) = \text{dist}(x, ZP^\mathcal{M})$$

 for all $\mathcal{M} \models T$ and all $x \in M^n$. (On M^n we use the metric given by the maximum of coordinate distances.)
The set $D(X)$ of disjoint pairs in $(B_X)^2$ was defined to be the zeroset of the formula $|||x| \land |y||$. The next result says that $D(X)$ is a definable set in all Banach lattices (i.e., in all models of T_{latt}).

Lemma

For any Banach lattice X, for any $x, y \in B_X$, we have

$$\text{dist}((x, y), D(X)) = \varphi_{\text{disj}}^X(x, y)$$

where $\varphi_{\text{disj}}(x, y)$ is the formula

$$\inf_w \inf_z (||w| \land |z|| + \max(||x - w||, ||y - z||)).$$

Proof.

Given $x, y \in B_X$ the key is to construct $(u, v) \in D(X)$ such that

$$\max(||x - u||, ||y - v||) \leq |||x| \land |y||.$$

\[\square\]
Let $\mathcal{C} = \text{Mod}(T)$ be an axiomatizable class of Banach lattices, and let $T^B := \text{Th}(\mathcal{C}^B)$. The following conditions are equivalent:

(1) \mathcal{C} has DPA.

(2) There exists a definable predicate $P(x, y)$ for the theory T^B such that for all $X \in \mathcal{C}$ and all $x, y \in B_X$ one has

$$\text{dist}((x, y), D(X)) = P^X(x, y).$$

(3) There exists a definable predicate $Q(x, y, z)$ for T^B such that for all $X \in \mathcal{C}$ and all $x, y, z \in B_X$ one has

$$\|z - a_X(x, y)\| = Q^X(x, y, z).$$

Note: in (2) and (3) the predicates P and Q have to be uniform limits of formulas in the Banach space language.
Corollary (Key Lemma for the Main Theorem)

Let C be an axiomatizable class of Banach lattices such that every member of C has DPA. Suppose $X \in C$ and E is a linear subspace of X. If E is an elementary Banach subspace of X, then the lattice function $a_X(x, y)$ maps $E \times E$ into E.

Proof. Let $C_X \subseteq C$ be the class of all Banach lattices Y that are elementarily equivalent to X. A small argument shows that the class C_X has DPA, so we can apply the previous Theorem to it. Let $Q(x, y, z)$ be the definable predicate for the class C_X that is described in statement (3) of that Theorem. Then Q^E is the restriction of Q^X to E^3. Moreover, for any $x, y \in B_E$ we have

$$\inf_{z \in B_E} Q^E(x, y, z) = \inf_{z \in B_X} Q^X(x, y, z) = \inf_{z \in B_X} \|z - a_X(x, y)\| = 0.$$

It follows that there is a sequence in E converging to $a_X(x, y)$.
Remark

The class of $C(K)$ Banach lattices is axiomatizable, and has property DPA (by the Banach-Stone Theorem).

Of course there exist (many) $C(K)$ spaces which are not order continuous, so the Main Theorem does not apply to this case. Heinrich (1981) did show that the class of $C(K)$ Banach spaces is axiomatizable, but without giving explicit axioms.

Question

Give an explicit Banach space definable predicate whose value in each $C(K)$ space X is $\text{dist}((x, y), D(X))$.

Give explicit axioms for the class of $C(K)$ Banach spaces.
Proposition

Let C be an axiomatizable class of Banach spaces with DPA. Then the following are equivalent, for any $X, Y \in C$:

1. X, Y are elementarily equivalent as Banach spaces.
2. X, Y are elementarily equivalent as Banach lattices.

Proof.

Assume (1). Then there exist elementary extensions X', Y' of X, Y respectively, and a surjective linear isometry $J: X' \to Y'$. Since C has DPA, the map J is disjointness preserving. Therefore $|J|$ (defined above: $|J|(x) = |J(x_+) - J(x_-)|$) is a linear lattice isometry from X' onto Y'. Hence X', Y' are elementarily equivalent as Banach lattices, so the same is true of X, Y.

\[\square\]