Model theory of \mathbb{R}-trees and of ultrametric spaces

C. Ward Henson
University of Illinois
(joint work with Sylvia Carlisle)

November, 2019

last revised 11/14/19
A metric space (X, d) is an \mathbb{R}-tree if for every $a, b \in X$ there is a unique arc (denoted $[a, b]$) from a to b in X, and this arc is isometric to the interval $[0, d(a, b)]$.

Let (X, d) be an \mathbb{R}-tree.

- A branch at a is a connected component of $X \smallsetminus \{a\}$.
- The degree of a is the number of branches at a.
- The height of a branch β at a is $\sup\{d(a, x) \mid x \in \beta\}$.
- a is a branch point if its degree is ≥ 3.
- a is an endpoint if its degree is ≤ 1.
Let \((X, d)\) be a metric space.

- For \(a, b, x \in X\) the **Gromov product** is
 \[
 (a \cdot b)_x := \frac{1}{2}[d(a, x) + d(b, x) - d(a, b)].
 \]

- When \((X, d)\) is an \(\mathbb{R}\)-tree,
 \[
 (a \cdot b)_x = \text{dist}(x, [a, b]).
 \]

- \((X, d)\) is **0-hyperbolic** if for every \(a, b, c, x \in X\)
 \[
 \min[(a \cdot c)_x, (b \cdot c)_x] \leq (a \cdot b)_x.
 \]

- Every \(\mathbb{R}\)-tree is 0-hyperbolic. Indeed, for all points \(a, b, c\),
 \[
 [a, c] \cup [b, c] \supseteq [a, b].
 \]

- \((X, d)\) is **geodesic** if for every \(a, b \in X\) there is an isometric map \(\alpha\) from the interval \([0, d(a, b)]\) to \(X\) such that \(\alpha(0) = a\) and \(\alpha(d(a, b)) = b\).

- \((X, d)\) is an \(\mathbb{R}\)-tree if and only if it is
 geodesic and 0-hyperbolic.
Proposition

A complete metric space \((X, d)\) is an \(\mathbb{R}\)-tree iff it is 0-hyperbolic and has the approximate midpoint property, which says:

for all \(a, b \in X\) and all \(\epsilon > 0\) there exists \(c \in X\) such that both \(d(a, c)\) and \(d(b, c)\) are within \(\epsilon\) of \(\frac{1}{2}d(a, b)\).

Proof.

For each \(n \geq 1\), suppose \(c_n\) satisfies the displayed condition for \(\epsilon = \frac{1}{n}\). The 0-hyperbolic inequality can be used to show \(d(c_m, c_n) \leq \frac{1}{m} + \frac{1}{n}\). Therefore \((c_n)\) converges to a point \(c\) satisfying \(d(a, c) = d(b, c) = \frac{1}{2}d(a, b)\). Applying this in an inductive way, we get a function \(\mu\) from the set \(D\) of dyadic rationals in \([0, 1]\) to \(X\) such that \(\mu(0) = a, \mu(1) = b\), and for every \(s, t \in D\) we have \(d(\mu(s), \mu(t)) = |t - s|d(a, b)\). Then \(\mu\) extends to all of \([0, 1]\) by uniform continuity. The function \(f(t) = \mu(t/d(a, b))\) is isometric for \(t\) in the interval \([0, d(a, b)]\) and satisfies \(f(0) = a\) and \(f(d(a, b)) = b\). In other words, \((X, d)\) is geodesic. \(\square\)
Both the 0-hyperbolic condition and the approximate midpoint condition can obviously be expressed using continuous first order logic. This allows us to axiomatize many classes of \mathbb{R}-trees.

We focus on the class \mathcal{C}_r of pointed \mathbb{R}-trees (X, d, p) that have radius at most r, for a fixed $r > 0$.

Theorem

Let \mathbb{RT}_r consist of continuous conditions that express the 0-hyperbolic and approximate midpoint conditions together with the condition $\sup_x d(p, x) \leq r$. Then

(a) The models of \mathbb{RT}_r are exactly the members of \mathcal{C}_r that are metrically complete.

(b) The class \mathcal{C}_r is closed under completions, under unions of chains, and under ultraproducts.
The following fact about \mathbb{R}-trees is used in the reasoning behind several items that are stated later..

Let (X, d) be an \mathbb{R}-tree.

Proposition

Suppose E_1 and E_2 are disjoint, closed, nonempty subtrees of X. Then there exist unique points $e_1 \in E_1$ and $e_2 \in E_2$ such that

$$d(e_1, e_2) = \text{dist}(E_1, E_2).$$

Moreover, for all $x_1 \in E_1$ and $x_2 \in E_2$, the geodesic segment $[x_1, x_2]$ contains $[e_1, e_2]$, so we have

$$d(x_1, x_2) = d(x_1, e_1) + d(e_1, e_2) + d(e_2, x_2).$$
Let (X, d) be a metric space.

Corollary

(a) (X, d) embeds into an \mathbb{R}-tree iff (X, d) is 0-hyperbolic.

(b) Suppose for each $i = 1, 2$ that (Y_i, d_i) is an \mathbb{R}-tree and $f_i : X \rightarrow Y_i$ is isometric.

For each i let Z_i be the smallest \mathbb{R}-tree contained in Y_i and containing $f_i(X)$ (the subtree of Y_i spanned by $f_i(X)$).

Then there exists a surjective isometry $g : Z_1 \rightarrow Z_2$ such that $f_2 = g \circ f_1$.

So, for every 0-hyperbolic metric space (X, d) there is a unique \mathbb{R}-tree (Y, d) of which (X, d) is a subspace and for which Y is spanned by X; that is, Y is the union of the segments $[a, b]$, with $a, b \in Y$.
Let \((X, d)\) be an \(\mathbb{R}\)-tree.

- For any \(a, b, c \in X\), there is a single point in \([a, b] \cap [a, c] \cap [b, c]\), which we denote \(Y(a, b, c)\).
- For any point \(x \in X\), we have
 \[
 d(x, Y(a, b, c)) = \max[(a \cdot b)_x, (a \cdot c)_x, (b \cdot c)_x].
 \]
- Therefore, the function \(Y(x, y, z)\) is a quantifier-free definable function on models of \(\mathbb{R}T_r\).

Corollary

Let \((X, d)\) be an \(\mathbb{R}\)-tree and let \((\overline{X}, d, p)\) be its completion. Then any point \(a \in \overline{X} \setminus X\) is the limit of a sequence \((a_n)\) from \(X\) such that for all \(n\) we have \(a_n \in [p, a_{n+1}] \subseteq [p, a]\).
Consequently, any such “new” point is an endpoint in \(\overline{X}\).
an \mathbb{R}-tree is **densely branching** if its set of branch points is dense.

in a densely branching \mathbb{R}-tree, for any distinct points a, b, the set of branch points that lie on the segment $[a, b]$ is dense in $[a, b]$.

in a separable densely branching \mathbb{R}-tree, the set of branch points that lie on $[a, b]$ is countable.
Let (X, d, p) be an \mathbb{R}-tree of radius at most r (i.e., it is a member of C_r).

- A point a in X is a rich branch point if there exist at least 3 branches at a of height at least $r - d(p, a)$.
- (X, d, p) is a richly branching \mathbb{R}-tree of radius r if the set of rich branch points in X is dense.
- If (X, d, p) is a richly branching \mathbb{R}-tree of radius r, then so is the completion of (X, d, p).

Proposition

Let (X, d, p) be a richly branching \mathbb{R}-tree of radius r, and suppose (X, d) is complete. For every $a \in X$ and every branch β at a, there exists $b \in \beta$ such that $d(p, b) = r$.
The theory $\mathbb{R}T_r$ has a model companion, which admits QE and is complete.

The model companion is axiomatized by adding to $\mathbb{R}T_r$ a single condition (to be given on the next slide) which is of the form $\sup_x \inf_{y_1} \inf_{y_2} \inf_{y_3} \eta(x, y_1, y_2, y_3) = 0$, where η is quantifier-free. We denote this set of axioms by $\text{rb} \mathbb{R}T_r$.

The models of $\text{rb} \mathbb{R}T_r$, which must be the existentially closed models of $\mathbb{R}T_r$, are exactly the complete, richly branching \mathbb{R}-trees of radius r.
We write y for the sequence of variables y_1, y_2, y_3. Consider the following quantifier-free formulas $\alpha(x, y)$ and $\beta(x, y)$:

- $\alpha(x, y) := \max_{i=1,2,3}\{|d(x, y_i) - (r - d(p, x))|\}$;
- $\beta(x, y) := \max_{1 \leq i < j \leq 3}\{d(x, y_i) + d(x, y_j) - d(y_i, y_j)\}$.

Then the axioms of rbRT_r consist of RT_r together with the condition

$$\sup_x \inf_{y_1} \inf_{y_2} \inf_{y_3} \max[\alpha(x, y), \beta(x, y)] = 0.$$
Further properties of rbRTr:

- It is stable but not superstable. (we describe precisely)
- It has the maximum number of models of density κ, for every infinite cardinal κ.
- Its space of 2-types has density 2^{ω} with respect to the induced metric. ($S_1(\text{rbRTr}) = [0, r]$)
- A model is κ-saturated iff every point has degree $\geq \kappa$. There exists a κ-saturated model of density κ iff $\kappa^\omega = \kappa$.
- It has very few isolated types. In particular, it has no atomic model.
Introduction of the metric space $E_r(M)$

Consider $M = (M, d, p) \models \text{rbRT}_r$; so M is complete.

- Let $E_r(M) := \{ a \in M \mid d(p, a) = r \}$.
- $E_r(M)$ is a definable set relative to the theory rbRT_r.
- $(E_r(M), d)$ satisfies the ultrametric inequality:
 \[d(x, y) \leq \max[d(x, z), d(y, z)]. \]
- For each $a \in E_r(M)$, the set $D_a := \{ d(a, b) \mid b \in E_r(M) \}$ is dense in $[0, 2r]$.
- For $a, b, a', b' \in E_r(M)$ define
 \[\rho((a, b), (a', b')) := d(Y(p, a, b), Y(p, a', b')). \]
 \[\rho \] is a definable predicate relative to rbRT_r; it defines a pseudometric on the set of pairs from $E_r(M)$.
- The imaginary sort in M^{eq} determined by ρ is canonically isomorphic to M.
So we let \mathcal{T}_r be the theory of ultrametric spaces of diameter at most $2r$, and let \mathcal{T}^*_r be the extension of \mathcal{T}_r obtained by adding a condition that expresses the following statement: for every x the distances $d(x, y)$ are dense in the interval $[0, 2r]$. As noted above,

if $M = (M, d, p) \models r\mathcal{B}\mathcal{R}\mathcal{T}_r$, then $(E_r(M), d) \models \mathcal{T}^*_r$.

Theorem

1. The theory \mathcal{T}^*_r is the model companion of \mathcal{T}_r and it has QE.
2. For every model (E, d') of \mathcal{T}^*_r, there exists a model $M = (M, d, p)$ of $r\mathcal{B}\mathcal{R}\mathcal{T}_r$ such that $(E, d') = (E_r(M), d)$.
3. Indeed, the theories $r\mathcal{B}\mathcal{R}\mathcal{T}_r$ and \mathcal{T}^*_r are bi-interpretable.