1.1 Problem. Let L be the language whose only nonlogical symbol is a binary predicate symbol E. Let K be the class of L-structures in which E is interpreted by an equivalence relation that has precisely one equivalence class of cardinality n for each positive integer n. Let T be the theory of K.

- Show that K is the class of all models of T.
- Show that T does not admit QE.
- In which cardinalities κ is T κ-categorical? (T is κ-categorical iff T has a model of cardinality κ and any two models of T that have cardinality κ are isomorphic.)

1.2 Problem. Let L be the language whose only nonlogical symbols are a binary function symbol $+$ and a constant symbol 0. For each field F let $V_2(F)$ be the L-structure whose underlying set is \{$(a, b) \mid a, b \in F$\}, whose interpretation of $+$ is given by $(a, b) + (a', b') = (a + a', b + b')$, for any $a, b, a', b' \in F$, and whose interpretation of 0 is $(0, 0)$. Let K be the class of all L-structures that are isomorphic to $V_2(F)$ for some field F.

- Show that K is closed under the ultraproduct construction.

1.3 Problem. Let L be the language whose only nonlogical symbol is the unary predicate symbol P. Let K be the class of all L-structures A such that P^A and $A \setminus P^A$ are both infinite. Let T be the theory of the class K.

- Classify the models of T up to isomorphism.
- Use local isomorphisms to show that T admits QE and is complete. (See the proof of Example 3.15.)

1.4 Problem. Consider the theory DLO of dense linear orderings without end points. Let $A = (A, <)$ be a model of DLO.

- Characterize the functions $f: A \to A$ that are A-definable in A.

(A function $f: A \to A$ is A-definable in A if there exists a formula $\varphi(x, y, z_1, \ldots, z_n)$ in the language of DLO and elements e_1, \ldots, e_n of A such that $b = f(a) \iff A \models \varphi[a, b, e_1, \ldots, e_n]$ for all $a, b \in A$. By Example 3.15, φ can be taken to be a quantifier-free formula.)