Some exercises for sections 7 and 9

Also see all the exercises that are implicit in the lecture notes, especially the “Facts”.

7.1. Let K be an algebraically closed field, considered as an L_r-structure; let X be any subset of K and let k be the subfield of K generated by X. Let A denote the $L(X)$-structure $(K,a)_{a \in X}$.

- For any $a, b \in K$, show that $\text{tp}_A(a) = \text{tp}_A(b)$ iff either a, b are both transcendental over k or both a, b are algebraic over k and have the same minimal polynomial over k.

7.2. If T is an L-theory, a model A of T is called existentially closed in $\text{Mod}(T)$ if it satisfies the following condition: whenever $A \subseteq B \models T$, $\varphi(x_1, \ldots, x_m, y_1, \ldots, y_n)$ is a quantifier-free formula, and $a_1, \ldots, a_m \in A$, then $B \models \exists y_1 \ldots \exists y_n \varphi[a_1, \ldots, a_m]$ implies $A \models \exists y_1 \ldots \exists y_n \varphi[a_1, \ldots, a_m]$.

- Let T be the theory of fields (in the language L_r). Show that a field K is existentially closed in the class of all fields iff K is algebraically closed.

9.1. Let A be an infinite set, considered as a structure for the language of pure equality. For each $X \subseteq A$, show that $\text{acl}_A(X) = X$.

9.2. Let $A \models \text{DLO}$. For each $X \subseteq A$, show that $\text{acl}_A(X) = X$.

9.3. Let K be a field and let L be the language of vector spaces over K. (See Exercises 3.6 and 5.4.) For each infinite K-vector space V (considered as an L-structure) and each $X \subseteq V$, show that $\text{acl}_V(X)$ is the K-linear subspace of V spanned by X.

9.4. Consider the theory T_{dis} of discrete linear orderings without endpoints. (See Example 5.6.) For $A \models T_{\text{dis}}$ and $X \subseteq A$, describe $\text{acl}_A(X)$.