1. (3 points) Let L_1 be the first-order language with a single non-logical symbol P, where P is a binary predicate symbol. Let A be a structure for L_1 and $h: |A| \rightarrow |A|$ a function.

Define: h is an automorphism of A if:
- h is a bijection from $|A|$ onto $|A|$;
- for all $a, b \in |A|$, we have $P^A(a, b) \iff P^A(h(a), h(b))$.

2. (4 points) Let L_2 be the first-order language with a single non-logical symbol Q, where Q is a unary predicate symbol. Let B be the structure for L_2 with $|B| = \mathbb{N}$ and $Q^B = \{0, 1, 2\}$.

Characterize the automorphisms of B. (Do not just give the definition.)

Ans:
- The restriction of h to Q^B is one of the 6 possible permutations of $\{0, 1, 2\}$ and the restriction of h to $\mathbb{N} \setminus Q^B$ is an arbitrary permutation of that set.
3 (3 points) Give a prenex formula that is logically equivalent to:

\[(\forall x \, Qx \rightarrow \exists x \,(P_x \rightarrow \forall y \, R_{xy}))\]

\[\exists x \, \exists z \, \forall y \,(Q_x \rightarrow (P_z \rightarrow R_{zy}))\]

And

(For example)