1 (3 points) Let A be an interpretation (structure) for a first-order language L and let $s: V \to |A|$, where V is the set of variables of L. Complete the following equivalence so it states the quantifier clause of the inductive definition of the satisfaction relation: for any wff φ of L and x in V:

\[\models_A \forall x \varphi [s] \iff \left[\begin{array}{l}
\text{For every } d \in |A| \\
\models_A \varphi [s(x|d)]
\end{array} \right] \]

2 (7 points) Give a careful proof, using the inductive definition of satisfaction, of the following implication, for any wff α and variable x:

\[\forall x \alpha \models \alpha \]

Proof:

Let A be any interpretation and $s: V \to |A|$ any function ($V =$ variables of the language) we assume $\models_A \forall x \alpha [s]$ and need to prove $\models_A \alpha [s]$. This follows from in the equivalence above by taking $d = s(x)$. (Note that $s(x|s(x))$ equals s.)