MATH 116 EXAM 3

You need to show all your work to get a full credit.

Problem 1 (15 points) Let \(y = 3x^2 + 18x + 25 \). Write the function in the standard form and sketch the graph.

Solution

\[
y + 27 = 3(x^2 + 6x + 9) + 25.
\]

\[
y = 3(x + 3)^2 - 2.
\]

\[
\begin{array}{c|ccc|ccc|ccc}
& & & & & & & & & \\
\hline
-10 & -7.5 & -5 & 2.5 & 0 & 2.5 & 5 & & & \\
30 & 25 & 20 & 15 & 10 & 5 & 0 & & & \\
\end{array}
\]

Problem 2 (7 points) The equation \(2x^3 + 11x^2 + 18x + 9 = 0 \) has a solution \(x = -3 \). Using synthetic division, find all the solutions to the equation.

Solution

Using synthetic division, we have

\[
2x^3 + 11x^2 + 18x + 9 = (x + 3)(2x^2 + 5x + 3) = (x + 3)(2x + 3)(x + 1) = 0.
\]

\[
x = -3, \quad -\frac{2}{3}, \quad 1.
\]

Problem 3 (5 point each) Let \(y = \frac{x^2 - 2x - 15}{x + 1} \).

a. Find the vertical asymptote.

Solution

\[
x + 1 = 0.
\]

\[
x = -1.
\]
b. Find the slant asymptote/horizontal asymptote if there is.
 solution) Since the degree of the numerator is bigger than the degree of the
 numerator, there is a slant asymptote. If you divide $x^2 - 2x - 15$ by $x + 1$, the quotient is
 $x - 3$. Hence, the slant asymptote is

 $$y = x - 3.$$

 c. Find the x-intercept and y-intercept.
 solution) x-intercept is

 $$0 = x^2 - 2x - 15.$$

 $$(x - 5)(x + 3) = 0.$$

 $$x = 5, \quad -3.$$

 y-intercept is

 $$y = \frac{-15}{1} = -15.$$

 d. Sketch the graph.
 solution)

 ![Graph](image)

 Problem 4 (6 points) Find the inverse function of $y = x^7 + 1$.
 solution) Switch x and y. Then,

 $$x = y^7 + 1.$$

 So,
\[y^7 = x - 1. \]

\[y = \sqrt[3]{x - 1}. \]

Problem 5 (11 points) Sketch the graph of \(y = e^x \) and \(y = e^{-x} \). Indicate the \(y \)-intercepts. Also find the domain and the range.

Solution \(y \)-intercept is

\[y = e^0 = e^{-0} = 1. \]

Domain is \((-\infty, \infty)\) and the range is \((0, \infty)\).

Problem 6 (5 point each) Let \(y = \ln(x - 3) \).

a. Find the \(x \)-intercept.

Solution

\[0 = \ln(x - 3). \]

\[x - 3 = 1. \]

\[x = 4. \]

b. Sketch the graph.

Solution
c. Find the domain.

solution)

\[x - 3 > 0. \]

\[x > 3. \]

Problem 7 (9+9+7 points) Solve the following equations.

a. \(\log_5 x - \log_5(x - 4) = 1 \)

solution)

\[\log_5 \frac{x}{x - 4} = 1. \]

\[\frac{x}{x - 4} = 5. \]

\[x = 5(x - 4). \]

\[x = 5x - 20. \]

\[4x = 20. \]

\[x = 5. \]

b. \(\ln(x - 2) + \ln(x + 3) = \ln 14. \)

solution)
\[\ln(x - 2)(x + 3) = \ln 14. \]

\[
(x - 2)(x + 3) = 14.
\]

\[x^2 + x - 6 = 14. \]

\[x^2 + x - 20 = 0. \]

\[(x + 5)(x - 4) = 0. \]

\[x = -5, \quad 4. \]

Check: \(x = -5 \): \(\ln(-7) \) is not defined. Hence it is not a solution.

\(x = 4 \): \(\ln 2 + \ln 7 = \ln 14. \)

Thus, the solution is \(x = 4 \).

\[c. \left(\frac{2}{3} \right)^{x-2} = \left(\frac{27}{8} \right)^{2x-1} \]

Solution)

\[\left(\frac{2}{3} \right)^{x-2} = \left(\frac{2}{3} \right)^{-3(2x-1)} \]

\[x - 2 = -3(2x - 1). \]

\[x - 2 = -6x + 3. \]

\[7x = 5. \]

\[x = \frac{5}{7}. \]

Problem 8 (1 point) Print your name: