Problem 1. (Brown Exercise 2.4.5) Consider $X = [0, 2] \setminus \{1\}$ as a subspace of the real line \mathbb{R}. Show that the subset $[0, 1) \subset X$ is both open and closed in X.

Solution. $[0, 1)$ is open in X because we can write

$$[0, 1) = (-8, 1) \cap X$$

and $(-8, 1)$ is open in \mathbb{R}.

On the other hand, $[0, 1)$ is closed in X because we can write

$$[0, 1) = [0, 1] \cap X$$

and $[0, 1]$ is closed in \mathbb{R}. \hfill \Box$
Problem 2. (Bredon Exercise I.3.8) Let X be a topological space that can be written as a union $X = A \cup B$ where A and B are closed subsets of X. Let $f: X \to Y$ be a function, where Y is any topological space. Assume that the restrictions of f to A and to B are both continuous. Show that f is continuous.

Solution.

Lemma. Let $A \subseteq X$ be a closed subset. If $C \subseteq A$ is closed in A, then C is also closed in X.

Proof. Since C is closed in A, it can be written as $C = \tilde{C} \cap A$ for some closed subset $\tilde{C} \subseteq X$. Therefore C is an intersection of closed subsets of X, and thus is closed in X. \qed

Let $C \subset Y$ be a closed subset. Its preimage under f is the union

$$f^{-1}(C) = (f^{-1}(C) \cap A) \cup (f^{-1}(C) \cap B)$$

$$= (f|_A)^{-1}(C) \cup (f|_B)^{-1}(C).$$

Since the restriction $f|_A: A \to Y$ is continuous, $(f|_A)^{-1}(C)$ is closed in A, and thus closed in X by the lemma. Likewise, $(f|_B)^{-1}(C)$ is closed in X. Therefore their union

$$f^{-1}(C) = (f|_A)^{-1}(C) \cup (f|_B)^{-1}(C).$$

is closed in X, so that f in continuous. \qed

Remark. The same proof shows that the statement still holds if A and B are both open in X.

2
Problem 3. A map between topological spaces \(f : X \to Y \) is called an **open** map if for every open subset \(U \subseteq X \), its image \(f(U) \subseteq Y \) is open in \(Y \).

a. (Munkres Exercise 2.16.4) Let \(X \) and \(Y \) be topological spaces. Show that the projection maps \(p_X : X \times Y \to X \) and \(p_Y : X \times Y \to Y \) are open maps.

Solution.

Lemma. A map \(f : X \to Y \) is open if and only if \(f(B) \subseteq Y \) is open in \(Y \) for every \(B \in \mathcal{B} \) belonging to some basis \(\mathcal{B} \) of the topology on \(X \).

Proof. \((\Rightarrow)\) Each member \(B \in \mathcal{B} \) is open in \(X \).

\((\Leftarrow)\) Let \(U \subseteq X \) be open in \(X \). Then \(U \) is a union \(U = \bigcup_\alpha B_\alpha \) of basic open subsets \(B_\alpha \in \mathcal{B} \). Its image under \(f \) is

\[
 f(U) = f\left(\bigcup_\alpha B_\alpha \right) = \bigcup_\alpha f(B_\alpha)
\]

where each \(f(B_\alpha) \) is open in \(Y \) by assumption. Thus \(f(U) \) is a union of open subsets and hence open. \(\square \)

Take an “open box” \(U \times V \subseteq X \times Y \), where \(U \subseteq X \) is open and \(V \subseteq Y \) is open. Its projection onto the first factor is

\[
 p_X(U \times V) = U \subseteq X
\]

which is open in \(X \). Since open boxes form a basis of the topology on \(X \times Y \), the lemma guarantees that \(p_X \) is an open map, and likewise for \(p_Y \). \(\square \)
b. Find an example of metric spaces \(X \) and \(Y \), and a closed subset \(C \subseteq X \times Y \) such that the projection \(p_X(C) \subseteq X \) is not closed in \(X \).

In other words, the projection maps are (usually) not closed maps.

Solution. Take \(X = Y = \mathbb{R} \) and consider the hyperbola in \(\mathbb{R} \times \mathbb{R} \)

\[
C = \{(x, \frac{1}{x}) \mid x \neq 0\} = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid xy = 1\}.
\]

Its projection onto the first factor is

\[
p_X(C) = \mathbb{R} \setminus \{0\}
\]

which is *not* closed in \(\mathbb{R} \).

To show that \(C \) is closed in \(\mathbb{R} \times \mathbb{R} \), note that the function \(f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) defined by \(f(x, y) = xy \) is continuous, and \(C \) is the preimage \(C = f^{-1}(\{1\}) \). Since the singleton \(\{1\} \) is closed in \(\mathbb{R} \), \(C \) is closed in \(\mathbb{R} \times \mathbb{R} \).
Problem 4. (Munkres Exercise 2.19.7) Consider the set of sequences of real numbers
\[\mathbb{R}^\mathbb{N} = \{ (x_1, x_2, \ldots) \mid x_n \in \mathbb{R} \text{ for all } n \in \mathbb{N} \} \cong \prod_{n \in \mathbb{N}} \mathbb{R} \]
and consider the subset of sequences that are “eventually zero”
\[\mathbb{R}^\infty := \{ x \in \mathbb{R}^\mathbb{N} \mid x_n \neq 0 \text{ for at most finitely many } n \} \].

a. In the box topology on \(\mathbb{R}^\mathbb{N} \), is \(\mathbb{R}^\infty \) a closed subset?

Solution. Yes, \(\mathbb{R}^\infty \) is closed in the box topology.

Let \(x \in \mathbb{R}^\mathbb{N} \setminus \mathbb{R}^\infty \), which means that the sequence \(x \) has infinitely many non-zero entries \(x_n \neq 0 \). For all those indices \(n \), pick an open neighborhood \(U_n \) of \(x_n \in \mathbb{R} \) which does not contain 0. For other values of \(n \), take \(U_n = \mathbb{R} \). Then the open box \(\prod_n U_n \) is an open neighborhood of \(x \) which does not intersect \(\mathbb{R}^\infty \).

Indeed, for any \(y \in \prod_n U_n \) and every index \(n \) such that \(x_n \neq 0 \), we have \(y_n \in U_n \) so that \(y_n \neq 0 \) by construction. Because there are infinitely many such indices, we conclude \(y \notin \mathbb{R}^\infty \).

b. In the product topology on \(\mathbb{R}^\mathbb{N} \), is \(\mathbb{R}^\infty \) a closed subset?

Solution. No, \(\mathbb{R}^\infty \) is not closed in the product topology.

Let \(x \in \mathbb{R}^\mathbb{N} \setminus \mathbb{R}^\infty \) and consider any open neighborhood \(U = \prod_n U_n \) of \(x \) which is a “large box”, i.e. \(U_n \subseteq \mathbb{R} \) is open for all \(n \) and \(U_n = \mathbb{R} \) except for finitely many \(n \). In particular, there is a number \(N \) such that \(U_n = \mathbb{R} \) for all \(n \geq N \). Consider a sequence \(y \) with \(y_n = 0 \) for all \(n \geq N \) and \(y_n \in U_n \) for \(1 \leq n < N \). Then we have \(y \in U \cap \mathbb{R}^\infty \).

Because “large boxes” form a basis of the product topology, every open neighborhood of \(x \) intersects \(\mathbb{R}^\infty \). Therefore \(\mathbb{R}^\infty \) is not closed.

Remark. In fact, the argument shows that \(x \) is not an interior point of \(\mathbb{R}^\mathbb{N} \setminus \mathbb{R}^\infty \), so that the interior of \(\mathbb{R}^\mathbb{N} \setminus \mathbb{R}^\infty \) is empty. Equivalently, the closure of \(\mathbb{R}^\infty \) is all of \(\mathbb{R}^\mathbb{N} \), i.e. \(\mathbb{R}^\infty \) is dense in \(\mathbb{R}^\mathbb{N} \).
Problem 5. Let X be a topological space, S a set, and $f : X \to S$ a function. Consider the collection of subsets of S

$$\mathcal{T} := \{ U \subseteq S \mid f^{-1}(U) \text{ is open in } X \}.$$

a. Show that \mathcal{T} is a topology on S.

Solution.

1. The preimage $f^{-1}(S) = X$ is open in X, so that the entire set S is in \mathcal{T}. Likewise, $f^{-1}(\emptyset) = \emptyset$ is open in X, so that the empty set \emptyset is in \mathcal{T}.

2. Let U_α be a family of members of \mathcal{T}. Then we have

$$f^{-1}\left(\bigcup_\alpha U_\alpha\right) = \bigcup_\alpha f^{-1}(U_\alpha)$$

where each $f^{-1}(U_\alpha)$ is open in X by assumption. Thus $f^{-1}\left(\bigcup_\alpha U_\alpha\right)$ is also open in X, so that the union $\bigcup_\alpha U_\alpha$ is in \mathcal{T}.

3. Let U and U' be members of \mathcal{T}. Then we have

$$f^{-1}(U \cap U') = f^{-1}(U) \cap f^{-1}(U')$$

where $f^{-1}(U)$ and $f^{-1}(U')$ are open in X by assumption. Thus $f^{-1}(U \cap U')$ is also open in X, so that the finite intersection $U \cap U'$ is in \mathcal{T}.

b. Show that \mathcal{T} is the largest topology on S making f continuous.

Solution. Note that \mathcal{T} makes f continuous by construction: for all $U \in \mathcal{T}$, the preimage $f^{-1}(U) \subseteq X$ is open in X.

Let \mathcal{T}' be a topology on S making f continuous. Then for every $U \in \mathcal{T}'$, the preimage $f^{-1}(U)$ is open in X, which means $U \in \mathcal{T}$. This proves $\mathcal{T}' \subseteq \mathcal{T}$.

c. Let Y be a topological space. Show that a map $g : S \to Y$ is continuous if and only if the composite $g \circ f : X \to Y$ is continuous.

Solution. (\Rightarrow) The maps f and g are continuous, hence so is their composite $g \circ f$.

(\Leftarrow) Assume $g \circ f$ is continuous; we want to show that g is continuous. Let $U \subseteq Y$ be open and take its preimage $g^{-1}(U) \subseteq S$. To check that this subset is open, consider its preimage

$$f^{-1}\left(\left(g^{-1}(U)\right)\right) = (g \circ f)^{-1}(U) \subseteq X$$

which is open in X since $g \circ f$ is continuous. By definition of \mathcal{T}, $g^{-1}(U)$ is indeed open in S.

6
d. Show that \mathcal{T} is the smallest topology on S with the property that a map $g: S \to Y$ is continuous whenever $g \circ f$ is continuous.

Solution. Let \mathcal{T}' be a topology on S with said property. We know that $f: X \to (S, \mathcal{T})$ is continuous, but it can be written as the composite

$$X \xrightarrow{f} (S, \mathcal{T}') \xrightarrow{id} (S, \mathcal{T}).$$

By the property of \mathcal{T}', the composite $\text{id} \circ f$ being continuous guarantees that the identity $\text{id}: (S, \mathcal{T'}) \to (S, \mathcal{T})$ is continuous, i.e. $\mathcal{T} \leq \mathcal{T}'$. \qed
Problem 6. Consider the subset \(X = \{0\} \cup \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \subset \mathbb{R} \) viewed as a subspace of the real line \(\mathbb{R} \). As a set, \(X \) is the disjoint union of the singletons \(\{0\} \) and \(\left\{ \frac{1}{n} \right\} \) for all \(n \in \mathbb{N} \). However, show that \(X \) does not have the coproduct topology on \(\{0\} \amalg \bigcup_{n \in \mathbb{N}} \left\{ \frac{1}{n} \right\} \).

Solution. In the coproduct topology on \(\{0\} \amalg \bigcup_{n \in \mathbb{N}} \left\{ \frac{1}{n} \right\} \) (which happens to be the discrete topology), the summand \(\{0\} \) is open.

However, in the subspace topology on \(X \), the singleton \(\{0\} \) is not open. Indeed, any open ball \(B_r(0) \) around 0 will contain other points \(\frac{1}{n} \in B_r(0) \), for all \(n \) such that \(\frac{1}{n} < r \). \(\square \)