Problem 1. Let \(X \) be a compact topological space, and \((Y,d)\) a metric space. Consider the uniform metric
\[
d(f, g) := \sup_{x \in X} d(f(x), g(x))
\]
on the set of continuous maps \(C(X, Y) \).
Show that the topology on \(C(X, Y) \) induced by the uniform metric is the compact-open topology.

Problem 2. Let \(X \) and \(Y \) be topological spaces. Let \(f, g: X \to Y \) be two continuous maps.
Show that a homotopy from \(f \) to \(g \) induces a (continuous) path from \(f \) to \(g \) in the space of continuous maps \(C(X, Y) \) endowed with the compact-open topology.

More precisely, let \(F(X, Y) \) denote the set of all functions from \(X \) to \(Y \). There is a natural bijection of sets:
\[
\varphi: F(X \times [0, 1], Y) \cong F([0, 1], F(X, Y))
\]
sending a function \(H: X \times [0, 1] \to Y \) to the function \(\varphi(H): [0, 1] \to F(X, Y) \) defined by
\[
\varphi(H)(t) = H(\cdot, t) = h_t.
\]
Your task is to show that if a function \(H: X \times [0, 1] \to Y \) is continuous, then the following two conditions hold:

1. \(h_t: X \to Y \) is continuous for all \(t \in [0, 1] \);
2. The corresponding function \(\varphi(H): [0, 1] \to C(X, Y) \) is continuous.

Remark. If \(X \) is locally compact Hausdorff, then the converse holds as well: the two conditions guarantee that \(H: X \times [0, 1] \to Y \) is continuous. In that case, a homotopy from \(f \) to \(g \) is really the same as a path from \(f \) to \(g \) in the function space \(C(X, Y) \).