Proposition 0.1. Let $A \subseteq X$ be a connected subspace of a topological space X, and $E \subseteq X$ satisfying $A \subseteq E \subseteq \overline{A}$. Then E is connected.

1 Connected components

Definition 1.1. Consider the relation \sim on X defined by $x \sim y$ if there exists a connected subspace $A \subseteq X$ with $x, y \in A$. Then \sim is an equivalence relation, and the equivalence classes are called the connected components of X.

Proposition 1.2. 1. Let $Z \subseteq X$ be a connected subspace. Then Z lies entirely within one connected component of X.

2. Each connected component $C \subseteq X$ is connected.

3. Each connected component $C \subseteq X$ is closed in X.

Remark 1.3. In particular, the connected component C_x of a point $x \in X$ is the largest connected subspace of X that contains x.

Exercise 1.4. A topological space X is totally disconnected if its only connected subspaces are singletons $\{x\}$. Show that X is totally disconnected if and only if for all $x \in X$, the connected component C_x of x is the singleton $\{x\}$.

Exercise 1.5. Show that a topological space X is the coproduct of its connected components if and only if the space X/\sim of connected components (with the quotient topology) is discrete.

2 Path-connectedness

Definition 2.1. Let X be a topological space and let $x, y \in X$. A path in X from x to y is a continuous map $\gamma: [a, b] \to X$ satisfying $\gamma(a) = x$ and $\gamma(b) = y$. Here $a, b \in \mathbb{R}$ satisfy $a < b$.

Definition 2.2. A topological space is path-connected is for any $x, y \in X$, there is a path from x to y.

Proposition 2.3. Let X be a path-connected space. Then X is connected.

The converse does not hold in general.
Example 2.4 (Topologist’s sine curve). The space

\[A = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y = \sin \frac{1}{x}\} \subset \mathbb{R}^2 \]

is path-connected, and therefore connected. By Proposition 0.1, its closure

\[\overline{A} = A \cup \{(0) \times [-1, 1]\} \]

is also connected. However, \(\overline{A} \) is not path-connected.

Proposition 2.5. Let \(f : X \to Y \) be a continuous map, where \(X \) is path-connected. Then \(f(X) \) is path-connected.

3 Path components

Definition 3.1. Consider the relation \(\sim \) on \(X \) defined by \(x \sim y \) if there exists a path from \(x \) to \(y \). Then \(\sim \) is an equivalence relation, and the equivalence classes are called the **path components** of \(X \).

Note that there exists a path \(\gamma : [a, b] \to X \) from \(x \) to \(y \) if and only if there exists a path \(\sigma : [0, 1] \to X \) from \(x \) to \(y \), taking for example

\[\sigma(t) := \gamma(a + t(b - a)) \, . \]

We will often assume that the domain of parametrization is \([0, 1]\).

Proof that \(\sim \) is an equivalence relation.

1. Reflexivity: The constant path \(\gamma : [0, 1] \to X \) defined by \(\gamma(t) = x \) for all \(t \in [0, 1] \) is continuous. This proves \(x \sim x \).

2. Symmetry: Assume \(x \sim y \), i.e. there is a path \(\gamma : [0, 1] \to X \) with endpoints \(\gamma(0) = x \) and \(\gamma(1) = y \). Then \(\tilde{\gamma} : [0, 1] \to X \) defined by

\[\tilde{\gamma}(t) = \gamma(1 - t) \]

is continuous, since the flip \(t \mapsto 1 - t \) is a homeomorphism of \([0, 1]\) onto itself. Moreover \(\tilde{\gamma} \) has endpoints \(\tilde{\gamma}(0) = \gamma(1) = y \) and \(\tilde{\gamma}(1) = \gamma(0) = x \), which proves \(y \sim x \).

3. Transitivity: Assume \(x \sim y \) and \(y \sim z \), i.e. there are paths \(\alpha, \beta : [0, 1] \to X \) from \(x \) to \(y \) and from \(y \) to \(z \) respectively. Define the **concatenation** of the two paths \(\alpha \) and \(\beta \) as the path going through \(\alpha \) at double speed, followed by \(\beta \) at double speed:

\[(\alpha \ast \beta)(t) = \begin{cases}
\alpha(2t) & \text{if } 0 \leq t \leq \frac{1}{2} \\
\beta\left(2\left(t - \frac{1}{2}\right)\right) & \text{if } \frac{1}{2} \leq t \leq 1.
\end{cases} \]

This formula is well defined, because for \(t = \frac{1}{2} \) we have \(\alpha(1) = y = \beta(0) \).

Moreover, \(\alpha \ast \beta \) is continuous, because its restrictions to the closed subsets \([0, \frac{1}{2}]\) and \([\frac{1}{2}, 1]\) are continuous, and we have \([0, 1] = [0, \frac{1}{2}] \cup [\frac{1}{2}, 1]\).

Finally, \(\alpha \ast \beta \) has endpoints \((\alpha \ast \beta)(0) = \alpha(0) = x \) and \((\alpha \ast \beta)(1) = \beta(1) = z \), which proves \(x \sim z \).
Example 3.2. Recall the topologist’s sine curve

\[A = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y = \sin \frac{1}{x}\} \subset \mathbb{R}^2 \]

and its closure

\[\overline{A} = A \cup \{0\} \times [-1, 1) \]

which is connected, and therefore has only one connected component.

However, \(\overline{A} \) has exactly two path components: the curve \(A \) and the segment \(\{0\} \times [-1, 1] \).

Note that \(A \) is not closed in \(\overline{A} \), so that path components need **NOT** be closed in general, unlike connected components.

Proposition 3.3. Each path component of \(X \) is entirely contained within a connected component of \(X \). In other words, each connected component is a (disjoint) union of path components.

Proof. If two points \(x \) and \(y \) are connected by a path \(\gamma: [a, b] \to X \), then they are both contained in the connected subspace \(\gamma([a, b]) \subseteq X \). \(\square \)

Exercise 3.4. Let \(\{A_i\}_{i \in I} \) be a collection of path-connected subspaces of \(X \) and \(A \subseteq X \) a path-connected subspace satisfying \(A \cap A_i \neq \emptyset \) for all \(i \in I \). Show that the union \(\bigcup_{i \in I} A_i \cup A \) is path-connected.

In particular, if \(A \) and \(B \) are two path-connected subspaces of \(X \) satisfying \(A \cap B \neq \emptyset \), then their union \(A \cup B \) is path-connected.

Proposition 3.5.

1. Let \(Z \subseteq X \) be a path-connected subspace. Then \(Z \) lies entirely within one path component of \(X \).

2. Each path component \(C \subseteq X \) is path-connected.

Remark 3.6. In particular, the path component \(C_x \) of a point \(x \in X \) is the largest path-connected subspace of \(X \) that contains \(x \).