1 Separation axioms

Definition 1.1. A topological space X is called:

- **T_0 or Kolmogorov** if any distinct points are topologically distinguishable: For $x, y \in X$ with $x \neq y$, there is an open subset $U \subset X$ containing one of the two points but not the other.

- **T_1** if any distinct points are separated (i.e. not in the closure of the other): For $x, y \in X$ with $x \neq y$, there are open subsets $U_x, U_y \subset X$ satisfying $x \in U_x$ but $y \notin U_x$, whereas $y \in U_y$ but $x \notin U_y$.

- **T_2 or Hausdorff** if any distinct points can be separated by neighborhoods: For $x, y \in X$ with $x \neq y$, there are open subsets $U_x, U_y \subset X$ satisfying $x \in U_x$, $y \in U_y$, and $U_x \cap U_y = \emptyset$.

- **regular** if points and closed sets can be separated by neighborhoods: For $x \in X$ and $C \subset X$ closed with $x \notin C$, there are open subsets $U_x, U_C \subset X$ satisfying $x \in U_x$, $C \subset U_C$, and $U_x \cap U_C = \emptyset$.

- **T_3** if it is T_1 and regular.

- **completely regular** if points and closed sets can be separated by functions: For $x \in X$ and $C \subset X$ closed with $x \notin C$, there is a continuous function $f : X \to [0, 1]$ satisfying $f(x) = 0$ and $f|_C \equiv 1$.

- **$T_{3\frac{1}{2}}$ or Tychonoff** if it is T_1 and completely regular.

- **normal** if closed sets can be separated by neighborhoods: For $A, B \subset X$ closed and disjoint, there are open subsets $U, V \subset X$ satisfying $A \subset U$, $B \subset V$, and $U \cap V = \emptyset$.

- **T_4** if it is T_1 and normal.

There are implications $T_4 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1 \Rightarrow T_0$ as well as $T_{3\frac{1}{2}} \Rightarrow T_3$. By Urysohn’s lemma (see 4.1), the implication $T_4 \Rightarrow T_{3\frac{1}{2}}$ also holds, so that the chain can be written as

$$T_4 \Rightarrow T_{3\frac{1}{2}} \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1 \Rightarrow T_0$$

where each implication is strict (i.e. there are counter-examples to the reverse direction).
2 Equivalent characterizations

Proposition 2.1. The following are equivalent.

1. X is T_1.
2. Every singleton $\{x\}$ is closed in X.
3. For every $x \in X$, we have
 $$\{x\} = \bigcap_{\text{all neighborhoods } N \text{ of } x} N.$$

Proposition 2.2. The following are equivalent.

1. X is T_2.
2. The diagonal $\Delta \subseteq X \times X$ is closed in $X \times X$.
3. For every $x \in X$, we have
 $$\{x\} = \bigcap_{\text{closed neighborhoods } C \text{ of } x} C.$$

Proposition 2.3. The following are equivalent.

1. X is regular.
2. For every $x \in X$, any neighborhood of x contains a closed neighborhood of x. In other words, closed neighborhoods form a neighborhood basis of x.
3. Given $x \in U$ where U is open, there exists an open $V \subseteq X$ satisfying
 $$x \in V \subseteq \overline{V} \subseteq U.$$

Proposition 2.4. The following are equivalent.

1. X is normal.
2. For every $A \subseteq X$ closed, any neighborhood of A contains a closed neighborhood of A.
3. Given $A \subseteq U$ where A is closed and U is open, there exists an open $V \subseteq X$ satisfying
 $$A \subseteq V \subseteq \overline{V} \subseteq U.$$

3 A few properties

1. A subspace of a T_0 space is T_0.
2. A subspace of a T_1 space is T_1.

3. A subspace of a T_2 space is T_2.

4. A subspace of a regular (resp. T_3) space is regular (resp. T_3).

5. A subspace of a completely regular (resp. $T_{3\frac{1}{2}}$) space is completely regular (resp. $T_{3\frac{1}{2}}$).

6. A CLOSED subspace of a normal (resp. T_4) space is normal (resp. T_4).

Remark 3.2. A subspace of a normal space need NOT be normal in general.

Proposition 3.3. Behavior of (arbitrary) products.

1. A product of T_0 spaces is T_0.

2. A product of T_1 spaces is T_1.

3. A product of T_2 spaces is T_2.

4. A product of regular (resp. T_3) spaces is regular (resp. T_3).

5. A product of completely regular (resp. $T_{3\frac{1}{2}}$) spaces is completely regular (resp. $T_{3\frac{1}{2}}$).

Remark 3.4. A product of normal spaces need NOT be normal in general, even a finite product.

Proposition 3.5. Any compact Hausdorff space is T_4. See HW 4 Problem 6.

Proposition 3.6. Any metric space is T_4 (in fact T_6). See HW 6 Problem 3.

4 Urysohn’s lemma

Theorem 4.1 (Urysohn’s lemma). Let X be a normal space. Then closed subsets of X can be separated by functions: For $A, B \subseteq X$ closed and disjoint, there is a continuous function $f: X \to [0, 1]$ satisfying $f(a) = 0$ for all $a \in A$ and $f(b) = 1$ for all $b \in B$.

Such a function is sometimes called an **Urysohn function** for A and B.

Proof. Step 1: Construction.

Since A and B are disjoint, the inclusion $A \subseteq B^c =: U_1$ holds, and note that A is closed and U_1 is open.

Since X is normal, there is an open $U_\frac{1}{2}$ satisfying

$$A \subseteq U_\frac{1}{2} \subseteq \overline{U_\frac{1}{2}} \subseteq U_1.$$

Consider the inclusion $A \subseteq U_\frac{1}{2}$ where A is closed and $U_\frac{1}{2}$ is open. There is an open $U_\frac{1}{4}$ satisfying

$$A \subseteq U_\frac{1}{4} \subseteq \overline{U_\frac{1}{4}} \subseteq U_\frac{1}{2}.$$

Likewise, consider $\overline{U_\frac{1}{2}} \subseteq U_1$ where $\overline{U_\frac{1}{2}}$ is closed and U_1 is open. There is an open $U_\frac{3}{4}$ satisfying

$$\overline{U_\frac{1}{2}} \subseteq U_\frac{3}{4} \subseteq \overline{U_\frac{3}{4}} \subseteq U_1.$$

Repeating the process, we obtain for every “dyadic rational” $r = \frac{k}{2^n}$ for some $n \geq 0$ and $0 < k \leq 2^n$ an open subset U_r satisfying
• $A \subseteq U_r$ for all r;
• $U_r \subseteq U_s$ whenever $r < s$.

In particular we have $U_r \subseteq U_1 = B^c$ for all r, i.e. every U_r is disjoint from B.

Define the function $f : X \to [0,1]$ by the formula

$$f(x) = \begin{cases} 1 & \text{if } x \text{ belongs to no } U_r \\ \inf \{r \mid x \in U_r\} & \text{otherwise.} \end{cases}$$

Claim: f is an Urysohn function for A and B.

Step 2: Verification.

First, note that the dyadic rationals in $(0,1]$ are dense in $[0,1]$.

The condition $A \subseteq U_r$ for all r implies $f|_A \equiv 0$.

The condition $B \cap U_r = \emptyset$ for all r implies $f|_B \equiv 1$.

It remains to show that f is continuous. This follows from two facts.

Fact A: $x \in U_r \Rightarrow f(x) \leq r$. Indeed, the inclusion $U_r \subseteq U_s$ holds for all $s > r$, and s can be made arbitrarily close to r.

Fact B: $x \notin U_r \Rightarrow f(x) \geq r$. This is because the set $\{s \mid x \in U_s\}$ is upward closed, and thus cannot contain numbers $q < r$ if r is not in the set. This implies $r \leq \inf \{s \mid x \in U_s\} = f(x)$.

Continuity where $f = 0$.

Assume $f(x) = 0$, and let $\epsilon > 0$. Let r be a dyadic rational in $(0, \epsilon)$. Then we have $x \in U_r$ (by fact B) and $f(y) \leq r < \epsilon$ for all $y \in U_r$ (by fact A). Since U_r is a neighborhood of x, f is continuous at x.

Continuity where $f = 1$.

Assume $f(x) = 1$, and let $\epsilon > 0$. Let r be a dyadic rational in $(1 - \epsilon, 1)$. Then we have $x \in U_r^{c}$ (by fact A) and $f(y) \geq r > 1 - \epsilon$ for all $y \in U_r^{c}$ (by fact B). Since U_r^{c} is a neighborhood of x, f is continuous at x.

Continuity where $0 < f < 1$.

Assume $0 < f(x) < 1$, and let $\epsilon > 0$. Take r, s dyadic rationals satisfying

$$f(x) - \epsilon < r < f(x) < s < f(x) + \epsilon.$$

This implies $x \in U_s$ (by fact B) and $x \in U_r^{c}$ (by fact A), in other words $x \in U_s \setminus U_r$, which is a neighborhood of x.

Every $y \in U_s$ satisfies $f(y) \leq s$ (by fact A), whereas every $y \in U_r^{c}$ satisfies $f(y) \geq r$ (by fact B), so that the inequality

$$f(x) - \epsilon < r \leq f(y) \leq s < f(x) + \epsilon$$

holds for all $y \in U_s \setminus U_r$. This proves continuity of f at x. \(\square\)

Alternate proof of continuity. Since intervals of the form $[0, \alpha)$ or $(\alpha, 1]$ form a subbasis for the topology of $[0,1]$, it suffices to show that their preimages $f^{-1}[0, \alpha)$ and $f^{-1}(\alpha, 1]$ are open in X.

4
Consider the equivalent statements:

\[x \in f^{-1}([0, \alpha)) \iff f(x) < \alpha \]
\[\iff \text{There is a dyadic rational } r < \alpha \text{ satisfying } x \in U_r \]
\[\iff x \in \bigcup_{r < \alpha} U_r. \]

This proves the equality

\[f^{-1}([0, \alpha)) = \bigcup_{r < \alpha} U_r \]

which is open in \(X \) since each \(U_r \) is open.

Likewise, consider the equivalent statements:

\[x \in f^{-1}(\alpha, 1] \iff f(x) > \alpha \]
\[\iff \text{There is a dyadic rational } s > \alpha \text{ satisfying } x \notin U_s \]
\[\iff \text{There is a dyadic rational } r > \alpha \text{ satisfying } x \notin U^c_r \]
\[\iff x \in \bigcup_{r > \alpha} U^c_r. \]

This proves the equality

\[f^{-1}(\alpha, 1] = \bigcup_{r > \alpha} U^c_r \]

which is open in \(X \) since each \(U^c_r \) is open.

Remark 4.2. The result is trivially true if either \(A \) or \(B \) is empty, but the proof still works!

Remark 4.3. The Urysohn function need not separate \(A \) and \(B \) precisely. In other words, there can be points \(x \notin A \) where \(f(x) = 0 \) and points \(y \notin B \) where \(f(y) = 1 \).