Math 535 - General Topology
Additional notes

Martin Frankland

September 19, 2012

1 Compactness

1.1 Definitions

Definition 1.1. Let X be a topological space.

- A cover of X is a collection $\{U_\alpha\}_{\alpha \in A}$ of subsets $U_\alpha \subseteq X$ satisfying $X = \bigcup_{\alpha \in A} U_\alpha$.
- An open cover of X is a cover $\{U_\alpha\}_{\alpha \in A}$ where each U_α is open in X.
- A subcover of $\{U_\alpha\}_{\alpha \in A}$ is a subcollection $\{U_\beta\}_{\beta \in B}$ (for some $B \subseteq A$) which is still a cover, i.e. $X = \bigcup_{\beta \in B} U_\beta$.

Definition 1.2. A topological space X is compact if for every open cover $\{U_\alpha\}_{\alpha \in A}$ of X, there is a finite subcover $\{U_\alpha_1, \ldots, U_\alpha_n\}$, i.e. $X = U_\alpha_1 \cup \ldots \cup U_\alpha_n$.

1.2 Facts about compactness

Proposition 1.3. Let X be a topological space and $Y \subseteq X$ a subspace. Then Y is compact if and only if for every collection $\{U_\alpha\}_{\alpha \in A}$ of open subsets $U_\alpha \subseteq X$ satisfying $Y \subseteq \bigcup_{\alpha \in A} U_\alpha$, there is a finite subcollection $\{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$ satisfying $Y \subseteq U_{\alpha_1} \cup \ldots \cup U_{\alpha_n}$.

Proposition 1.4. Let K_1, \ldots, K_n be compact subspaces of X. Then their union $K_1 \cup \ldots \cup K_n$ is compact.

Slogan: “Finite union of compact is compact”.

Proposition 1.5. Let $f : X \to Y$ be a continuous map between topological spaces, and assume X is compact. Then $f(X)$ is compact.

Slogan: “Continuous image of compact is compact”.

Remark 1.6. In particular, a quotient of a compact space is always compact.

Proposition 1.7. Let X be a compact topological space and $C \subseteq X$ a closed subspace. Then C is compact.

Slogan: “Closed in compact is compact”.

1
Proposition 1.8. Let X be a Hausdorff topological space and $K \subseteq X$ a compact subspace. Then K is closed in X.

Slogan: “compact inside Hausdorff is closed”.

Example 1.9. Let X be an anti-discrete space. Then every subspace $Y \subset X$ is compact, though most of them are not closed in X (only the empty set \emptyset and X itself are closed in X).

Proposition 1.10. Let $f : X \to Y$ be a continuous map between topological spaces, where X is compact and Y a Hausdorff. Then f is a closed map.

In particular, if f is a continuous bijection, then f is a homeomorphism.

1.3 An important example

A basic example of compact space, yet one of the most important, is provided by the following classic theorem.

Theorem 1.11 (Bolzano-Weierstrass). The interval $[0, 1]$ is compact.

Proof. Suppose $[0, 1]$ is not compact, i.e. there exists an open cover $\{U_\alpha\}_{\alpha \in A}$ which does not admit a finite subcover. Then either $[0, 2 \cdot \frac{1}{2}, 1]$ or $[2, 1]$ (or both) cannot be covered by a finite subcover. Call this new interval $[a_1, b_1]$, where we write $[0, b_0] := [0, 1]$.

Repeating the argument, for every $n \geq 0$, we obtain an interval $[a_n, b_n]$ which cannot be covered by a finite subcover, and each interval has length $b_n - a_n = \frac{1}{2^n}$. Moreover, the intervals are nested (decreasing):

$[a_0, b_0] \supset [a_1, b_1] \supset [a_2, b_2] \supset \ldots$

The sequences $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ are monotone and bounded, therefore they converge, say $a_n \to a$ and $b_n \to b$. We have

$$\lim_{n \to \infty} (b_n - a_n) = \lim_{n \to \infty} b_n - \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} \frac{1}{2^n} = b - a = 0$$

so that $a = b$. This point $a \in [0, 1]$ is in some U_{a_0}, which is open, so we can find some small radius $\epsilon > 0$ such that the open ball $(a - \epsilon, a + \epsilon) \subseteq U_{a_0}$. (To be nitpicky, we should instead write $(a - \epsilon, a + \epsilon) \cap [0, 1]$, which is an open ball in $[0, 1]$.)

By the convergence $a_n \to a$ and $b_n \to a$, for n large enough we have $[a_n, b_n] \subset (a - \epsilon, a + \epsilon) \subseteq U_{a_0}$. These intervals $[a_n, b_n]$ can thus be covered by a finite subcover, namely the collection $\{U_{a_0}\}$ consisting of only one member. This contradicts the construction of $[a_n, b_n]$. □

Remark 1.12. Any closed interval $[a, b] \subset \mathbb{R}$ is homeomorphic to $[0, 1]$ and thus also compact.

Example 1.13. Consider the continuous map

$$f : [0, 2\pi] \to S^1$$

$$t \mapsto (\cos t, \sin t)$$

which induces a continuous map on the quotient

$$\overline{f} : [0, 2\pi]/\sim \to S^1$$

where the equivalence relation \sim identifies the endpoints of the interval, i.e. is generated by $0 \sim 2\pi$. Then \overline{f} is a continuous bijection, the domain $[0, 2\pi]/\sim$ is compact, and S^1 is Hausdorff, therefore \overline{f} is a homeomorphism.