1 Homeomorphisms

Definition 1.1. A map \(f: X \to Y \) between topological spaces is a \textbf{homeomorphism} if it is continuous, invertible (i.e. bijective), and its inverse \(f^{-1}: Y \to X \) is also continuous.

2 Neighborhoods

Definition 2.1. Let \(X \) be a topological space. A \textbf{neighborhood} of a point \(x \in X \) is a subset \(N \subseteq X \) such that there is an open \(U \) satisfying \(x \in U \subseteq N \).

3 Bases and subbases

Definition 3.1. Let \((X, \mathcal{T}) \) be a topological space. A \textbf{basis} for the topology \(\mathcal{T} \) of \(X \) is a collection \(\mathcal{B} \) of subsets of \(X \) satisfying

\[
\mathcal{T} = \left\{ \bigcup_{\alpha} B_\alpha \mid B_\alpha \in \mathcal{B} \right\}
\]

i.e. open sets are precisely unions of members of \(\mathcal{B} \).

Exercise 3.2. Let \(X \) be a set. Show that a collection \(\mathcal{B} \) of subsets of \(X \) is a basis for some topology on \(X \) if and only if \(\mathcal{B} \) satisfies the following conditions:

1. \(\mathcal{B} \) covers \(X \), i.e. \(\bigcup_{B \in \mathcal{B}} B = X \).

2. Finite intersections are unions: For any \(B, B' \in \mathcal{B} \), we have \(B \cap B' = \bigcup_{\alpha} B_\alpha \) for some family \(\{B_\alpha\} \) of members of \(\mathcal{B} \).

Definition 3.3. Let \((X, \mathcal{T}) \) be a topological space. A \textbf{subbasis} for the topology \(\mathcal{T} \) of \(X \) is a collection \(\mathcal{S} \) of subsets of \(X \) satisfying

\[
\mathcal{T} := \left\{ \bigcap_{\alpha} S_{\alpha,i} \mid S_{\alpha,i} \in \mathcal{S} \right\}
\]

i.e. finite intersections of members of \(\mathcal{S} \) form a basis for the topology.
4 Comparing topologies

For a given set X, topologies on X can be partially ordered by inclusion.

Definition 4.1. Let X be a set, and \mathcal{T}_1 and \mathcal{T}_2 two topologies on X. We say \mathcal{T}_1 is smaller than \mathcal{T}_2, denoted $\mathcal{T}_1 \leq \mathcal{T}_2$, if the inclusion $\mathcal{T}_1 \subseteq \mathcal{T}_2$ holds, viewed as subsets of the power set $\mathcal{P}(X)$. In other words, every \mathcal{T}_1-open is also \mathcal{T}_2-open.

One can also say that \mathcal{T}_2 is larger than \mathcal{T}_1.

Some references say that \mathcal{T}_1 is coarser than \mathcal{T}_2, while \mathcal{T}_2 is finer than \mathcal{T}_1.

Remark 4.2. The anti-discrete topology $\mathcal{T}_{\text{anti}} = \{\emptyset, X\}$ is the least element in that partial order, whereas the discrete topology $\mathcal{T}_{\text{dis}} = \mathcal{P}(X)$ is the greatest element. In other words, the inequalities

$$\mathcal{T}_{\text{anti}} \leq \mathcal{T} \leq \mathcal{T}_{\text{dis}}$$

hold for any topology \mathcal{T} on X.

Remark 4.3. By definition, the inequality $\mathcal{T}_1 \leq \mathcal{T}_2$ holds if and only if the identity function

$$\text{id}: (X, \mathcal{T}_2) \to (X, \mathcal{T}_1)$$

is continuous. Note the reversal, mapping “from fine to coarse”.

The poset of topologies on X has arbitrary meets (infima), described explicitly in the following proposition.

Proposition 4.4. Let $\{\mathcal{T}_\beta\}$ be a family of topologies on X. Then the intersection $\bigcap_\beta \mathcal{T}_\beta$ is a topology on X, and therefore the infimum of the family $\{\mathcal{T}_\beta\}$.

Proof. Exercise. □

Remark 4.5. If we consider an empty family of topologies, then their intersection is

$$\bigcap \mathcal{T}_\beta = \mathcal{P}(X) = \mathcal{T}_{\text{dis}}$$

which is a topology on X. Thus the proposition also holds in that case.

Definition 4.6. Let X be a set and \mathcal{S} be a collection of subsets of X. The topology generated by \mathcal{S} (if it exists) is the smallest topology $\mathcal{T}_\mathcal{S}$ containing \mathcal{S}. In other words, it satisfies $\mathcal{S} \subseteq \mathcal{T}_\mathcal{S}$ and for any other topology \mathcal{T}' containing \mathcal{S}, we have $\mathcal{T}_\mathcal{S} \leq \mathcal{T}'$.

Note that this universal property makes $\mathcal{T}_\mathcal{S}$ unique, if it exists.

Proposition 4.7. For any collection of subsets \mathcal{S}, the topology $\mathcal{T}_\mathcal{S}$ exists.

Proof. The topology

$$\mathcal{T}_\mathcal{S} = \bigcap_{\text{topologies } \mathcal{T} \text{ such that } \mathcal{S} \subseteq \mathcal{T}} \mathcal{T}$$

has the required properties. □

The following proposition provides an explicit description of $\mathcal{T}_\mathcal{S}$.

2
Proposition 4.8. The topology generated by \mathcal{S} is

$$\mathcal{T}_{\mathcal{S}} = \left\{ \bigcup_{\alpha}^{n_{\alpha}} \bigcap_{i=1}^{n_{\alpha}} S_{\alpha,i} \mid S_{\alpha,i} \in \mathcal{S} \right\}$$

i.e. the topology for which \mathcal{S} is a subbasis.

Proof. Homework 1 Problem 10. \qed