1. Consider the region R in \mathbb{R}^2 shown below at right. In this problem, you will do a change of coordinates to evaluate:

$$\int \int_R x - 2y \, dA$$

(a) Find a linear transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ which takes the unit square S to R. Write your answer both as a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and as $T(u, v) = (au + bv, cu + dv)$, and check your answer with the instructor.

(b) Compute $\int \int_R x - 2y \, dA$ by relating it to an integral over S and evaluating that. Check your answer with the instructor.

2. Another simple type of transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a translation, which has the general form $T(u, v) = (u + a, v + b)$ for a fixed a and b.

(a) If T is a translation, what is its Jacobian matrix? How does it distort area?

(b) Consider the region $S = \{ u^2 + v^2 \leq 1 \}$ in \mathbb{R}^2 with coordinates (u, v), and the region $R = \{ (x - 2)^2 + (y - 1)^2 \leq 1 \}$ in \mathbb{R}^2 with coordinates (x, y).

Make separate sketches of S and R.

(c) Find a translation T where $T(S) = R$.

(d) Use T to reduce

$$\int \int_R x \, dA$$

to an integral over S, and then evaluate that new integral using polar coordinates.

(e) Check your answer in (d) with the instructor.

Problems 3 and 4 on the back.
3. Consider the region \(R \) shown below. Here the curved left side is given by \(x = y - y^2 \). In this problem, you will find a transformation \(T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) which takes the unit square \(S = [0, 1] \times [0, 1] \) to \(R \).

(a) As a warm up, find a transformation that takes \(S \) to the rectangle \([0, 2] \times [0, 1]\) which contains \(R \).

(b) Returning to the problem of finding \(T \) taking \(S \) to \(R \), come up with formulas for \(T(u, 0), T(u, 1), T(0, v), \) and \(T(1, v) \). Hint: For three of these, use your answer in part (a).

(c) Now extend your answer in (b) to the needed transformation \(T \). Hint: Try “filling in” between \(T(0, v) \) and \(T(1, v) \) with a straight line.

(d) Compute the area of \(R \) in two ways, once using \(T \) to change coordinates and once directly.

4. If you get this far, evaluate the integrals in Problems 1 and 2 directly, without doing a change of coordinates. It’s a fun-filled task...