WARING’S PROBLEM WITH POLYNOMIAL SUMMANDS
KEVIN FORD

1. INTRODUCTION

Let f(x) be an integer valued polynomial with no fixed integer divisor > 2, i.e.
for no integer d > 2 does d|f(x) for all integers . One generalization of the famous
Waring problem is to determine whether for large enough s, the equation

(1.1) f@) + f(@a) + -+ f(zs) =n

is solvable in positive integers x1,...,zs for sufficiently large integers n. The ex-
istence of such s for every f was established by Kamke [5] in 1921. Subsequent
authors (Pillai, Hua ([2],[3],[4]), Vinogradov, Nacaev [7] and others) have studied
the problem of bounding G(f), the least s for which (1.1) is solvable for all large n.
Questions of local solubility of (1.1), that is solubility of the congruence

(1.2) f(x1)+ f(xa)+---+ f(xs) =n  (mod q),

play a more important and complicated role in this problem than in the classical
Waring problem. Let I'g(f) denote the least number s so that (1.2) is solvable for
every pair n,q. It is well known that 'g(z*) < 4k for every k, but Hua [4] found
that for every k, the polynomial

k

fule) = -0 (%)

=1

satisfies T'o(fx) = 2 — 1 (take s = 28 — 2 ¢ = 2 and n = (=1)* in (1.2)).
Clearly G(f) > T'o(f), but one can say more by restricting the values of n under
consideration, as has been done by several authors in the case f(z) = z* (e.g. [1],

[6])-

The singular series

= Z (12_jleaf<r /q> e(—an/q),

q=1

=

(a)

where e(z) = €2™* encapsulates the local solubility information. In particular,

GSs,7(n) > 0 for every n and &, ¢(n) > 0 if and only if (1.2) is soluble for every g.
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Define G(f) to be the least number s so that for every § > 0 and every n > ng(6)
with G, ¢(n) > 9§, (1.1) is soluble. The reason for taking &, ¢(n) > 0 instead
of &, ¢(n) > 0 is that we wish to exclude from consideration certain n lying in
sparse sequences for which (1.1) is insoluble but &, ¢(n) > 0. For example, taking
f(z)=z* s=15and n; =79-167 (j =0,1,...), it can be shown that (1.1) is not
soluble for n = n;, that &, ¢(n;) > 0 for all j, and that &, ¢(n;) — 0 as j — oo.
It is known that G(z*) = 16 (see [1]) and that G(z*) < 11 (see [6]).

It has been known for several decades that a standard diminishing ranges argu-
ment combined with Vinogradov’s bounds for exponential sums yields

(1.3) G(f) < k(41logk + O(loglogk))

uniformly for all f of degree k. In the classical Waring problem, Wooley [8] has
shown that
G(z*) < k(logk + O(loglogk)).

The new methods which have been successful in reducing the upper bounds in
the classical case, however, do not apply directly in the more general case. The
only improvement to (1.3) has been by Wooley [10], who has reduced the upper
bound for G(f) for certain lacunary polynomials f (polynomials with few non-zero
coefficients). For the precise statement, let

t
(1.4) f(.?)) = Zaixk", k=ki>ko>---> kt,
=1

where the numbers a; are integers, a; > 0 and £ > 2. We do not lose any generality
in assuming that the a; are integers, for (1.1) is soluble for a given function f(x) =
g(z) and given n = m if and only if the corresponding equation with f(z) = dg(x)
is soluble with n = dm.
Theorem [10, Theorem 9]. We have

(i) G(f) < 2k(logk + logt + loglog k + O(1)),

(ii) G(f) < (1 +o(1))klogk as k — oo provided either

(a) t = o(\/logk) and log(koks--- ki) = o(logk); or

% k2:o< log k

loglogk )

This gives an upper bound for G(f) of the same strength as in the classical setting
when both ¢t and ky are very small. The purpose of this paper is to show that
G(f) < (1+0(1))klogk for a wider class of polynomials, in particular those where
k — k; is small.

Theorem 1. With f defined by (1.4), we have
G(f) < k(logk + 2logt + log(k — k;) + loglog k + O(1)).
The main idea is to modify the efficient differencing method of [8] to handle general

polynomial summands, and use these bounds together with the exponential sum
bounds in [10] and the diminishing ranges method.
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2. A MEAN VALUE THEOREM

Let
t
fl@)=> aah,
=1
where
k=ki>ky>--->ki=ki—r2>1

and each a; is a non-zero integer. We also assume that a; > 0, k > 4, r < k/2 and
t > 2. With f fixed, define for positive integers w

t
g(z;w) = wk f(zw) = Z whi kg ki
i=1

Let &7 (P, R) denote the set of positive integers n < P which have no prime factors
exceeding R. Let I (P, R;w) denote the number of solutions of

Z(g(xﬁw) —9(yi;w)) =0, zi,yi € Z(P,R) (1<1i<s).

=1

We say a number \; is admissible if for every € > 0, there is a positive n = 7(e, )
such that if R < P" then

I,(P, R;w) <« P*ste uniformly in w > 1.
The implied constant may depend on ¢, s and f only.
In the following, vectors are denoted by boldface symbols with subscripts indi-

cating their dimension, e.g. m; stands for (mq, ma, ... ,m;). If ¥ (z) = ¥(z; hj, m;, w)}
is a polynomial in 25 + 2 variables with non-negative coefficients, let

SS(P7Q7R) - SS(Pa QaR7 qjam]aw)
be the number of solutions of

(2.1) U(zhj,myw)+ Y g(as;wmy - -m;)
i=1
= V(s hjymy,w) + Zg(yi; wmy -+ -myj)
i=1
with
P/2< 2,7 < P Vi: 1< hih<P/mb i yi€ o(Q,R).

Also, let
TS(P7 Qa Ra M) = TS(Pu Qu Ra M’ \Ila mj-l-l; w)
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denote the number of solutions of

(2.2) ¥(z;hj,mj,w)— V(25 hj,mj,w)
+mfy Y (9@ wmy - -myi) — g(yi; wmy - - -mygq)) =0
=1

with

P/2< 2,2 < Pyz= 72 (mod mi'); Vi: 1< hy < P/ml; zi,y; € #(Q/M, R).
From now on it will be assumed that U(z; hj, m;, w), interpreted as a polynomial
in z with coefficients depending on h;, m;, w, has degree between 2 and k£ and the
leading coefficient is positive whenever the variables h;, m;, w are all positive. The
notation o(1) will mean a function which tends to 0 as P — oo, the rate of which
depends only on f and s. We also write ¥'(z) or ¥'(z; hj, m;,w) for the partial
derivative of U with respect to z, and assume it is non-zero whenever P/2 < z < P
and each variable h;, m;, w is positive. We shall also suppose that R = P" for some
fixed 7 > 0 depending on f,s,e. Implied constants depend only on f,s,n, e unless
otherwise specified.
Our first lemma is a direct generalization of Lemma 2.2 of [8].

Lemma 2.1. If 1 < M < @Q < P then

Ss(PaQaR; \I}amj;w) <

J
ke 2s po(1) -
(Hlp/mz )(MR) P Mgmr?ffchRTs(P,Q,R,M,‘Il,mj+1,w).
1=

Proof. As in [8], the notation so(n) stands for the square-free kernel of n, i.e.
so(n) = [I,4p, and 2(M)y means some d|z,d < M satisfies so(z/d)|y.

We partition the solutions z, z’,hj,hg,a:s,ys of (2.1) into three classes: Sy
is the number of solutions with some z; < M or some y; < M, S; is the num-
ber of remaining solutions with z; 2(M)¥'(z) or y;2(M)¥'(Z') for some i, and
S3 is the number of solutions not counted in S; or Sy. Clearly Sg(P,Q,R) <
3maX(Sl,S2,53).

Case 1. S1 s mazimal. Let

u(ay L) = Z e(ag(z;wmy ---mj)),
z€%(L,R)

v(a) = Z e(a¥(z;hj,mj,w)).

Z,h]‘
Then 1
5:(P @, R) < / |v(@)*u(os M)u(o; Q)** 7| dax
0
and an application of Holder’s inequality gives

8.(P,Q. R) < (8,(P, M, R)* (8,(P,Q, R))'™/®,
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whence
Ss(PaQaR) < SS(P7 MaR) < M2Ss—1(P7Q7R)'

Case 2. Sy is marimal. Since the variable w plays no role in the estimation
of Ss(P, @, R) in this case, the analysis of [8] may be used without modification,
giving

SS(P7 Q7 R) < QMPO(l)SS—l(P7 Q7 R)
Case 3. S3 is maximal. As in [8], for each solution of (2.1) counted by Ss, there
are numbers ¢;|x; and d;|ly; (1 < i < s) with M < ¢;,d; < MR and (¢;, V'(2)) =
(d;, ¥'(2")) =1 for each i. Define the generating functions

ug(a) = Z e(ag(dz; wmy - -myj)),
z€#(Q/d,R)

vg(a) = Z e(a¥(z; hj, mj,w)).
z,h;
(d,¥'(2))=1

Writing C = c¢;---¢cs and D = d; - - - ds and applying Holder’s inequality twice gives

5.(P.@. ) < 3, [ vol@un(@) ] [ ue (@us (@) do
c,d 0 =1

s 1 1/25 1 1/28
2, 2s 2, 2s
< E H (/ lvoue, \) (/ lvpug; )
c,di=1 /0 0
s 1 1/2s 1 1/2s
2, 2s 2 ,2s
< E H </ |/Uczucz ) (/ ‘{Udi,u’di |)
c,d i=1 0 0
1 1/2s
2,2
< E ( lvgug® >
M<d<MR /0

< (MR)2S_1‘/,
where V is the number of solutions of
U(z;hj,mj,w) —V(z'; hY,my, w)

+ ) (g(das;my - mjw) — g(dys; ma - - -mjw)) =0
=1

with

P/2< 2,2 <P; M<d<MR; (d,9(2)=(d¥()=1
Vi: 1< hy,h, gP/mft, iy € A (Q/M, R).
We now make the critical observation that

g(dz;my - - -miw) = d¥g(z;mq - - - m;wd),
J J
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which implies
U(z) = U(2') (mod d*t).

For some constant K, depending only on k, the number of solutions of ¥(z) = u
(mod d*t) with (d, ¥'(2)) = 1 is < d¥/loslosd « po(1) As in [8], an application
of the Cauchy-Schwarz inequality reduces the problem to the case where z = 2/
(mod d*) and h; = h/;, introducing a factor HM RP°(M), where H = [[1_, (P/m}").
Writing m;4+1 = d, and recalling (2.2), we obtain

Ss(P,Q,R) < H(MR)*p°W . - Ts(P,Q, R, M; V15 w).
mj+1x

Combining the three cases yields

S,(P,Q,R) < QMP°MS,_(P,Q,R) + HMR)*P°V) max T, (P, Q, R, M).

mMjt1

If the second term on the right is the larger, we’re done. If the first term dominates,

by Hoélder’s inequality (as in case 1)
1-1/s 1 1/s
([ ptep )
0

Ss—1(P,Q, R) < ( /0 1 [v(e)*u(e; Q)| da)
< (S:(P,Q. R))' "V (PH?)Y?,
thus
(2.3) S,(P,Q,R) < PH*(QMP°W)s.

On the other hand, counting only the trivial solutions of (2.2), i.e. solutions with
z; = y; for each i, z = 2’ and h; = h} gives the lower bound

Ts(P,Q,R,M) > PH|«(Q/M,R)|° > PH(Q/M)*.
Combined with (2.3) this yields

Ss(P,Q,R) < HM?*P°(M) max Ts(P,Q,R,M;¥;mjyq1;w)

mjt1
and the lemma, follows in this case. [

Suppose now that

1
0<¢j< - (1<i<h-1
t

and for each j set
M;=P%,  H;=PM;™  0;j=¢1+--+¢;, Q=P

As in [8], define the modified forward difference operator A; by

Bo(p() =P, Aulpl@)shm) = o (ple+ mmd) - p(2))
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x Z (_1)j+61+...+6jp(z+glhlm’ft+____{_€jhjm-’;t)
€1,...,€5

€;€{0,1}

for j > 1. Now define polynomials ¥;, in 2j + 2 variables, by

Uo(z,w) = g(z;w),
Uiz hj,my,w) = Aj(g(zw);my hy) (5> 1).

It is straightforward to show that

V(2 hj, mj,w) = (hy---hy)

t
k.
D DU D] (RN ELCTE OB (St
=1 l

lo,-+ 1
where the inner sum is over I = (lo, !4, ... ,l;) satisfying lo+- - - +1; = ki, lo > 0 and
li>1(i=1,2,...,j). Asapolynomialin z the leading term is a;w*=Fthy - - h;2* =7 |}

Also, if each 0 < h; < P/mft, m; >0, w >0, P/2 < 2z < P and P sufficiently large
depending only on f, we have W’ (z; hj, mj,w) > 0.
Further define

Ssaj(mj) = SS(P7 QjaR; \Ijj;mj;w)
and
Tsj(mjs1) = To(P,Qj, R, Mjt1; Vjsmjpq;w).

In the following we assume w is fixed and that M; < m; < M;R for each j.
By Lemma 2.1 we obtain

J
L (m H; | (M; 2s po(1) T, (misq).
Ss,5(m;) < (H ) (Mj11R) MngmI?ngMHlR g (mjt1)

=1

Lemma 2.2. We have

J
TS,j(mj+1) <P (H Hz) Is(Qj+1, R, wm - - - mj+1)+

=1

{L(Qjt1, Riwmy -+ -mj11)Ss i1 (M) /2.

Proof. We have T j(mji1) < Uy + 2Uq, where U is the number of solutions of
(2.2) with z = 2’ and U; is the number of solutions of (2.2) with z < 2’. Clearly

J
Uy <P (H Hi) I (Qjs1, Rywmy - -mjyq).

=1
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To bound U;, we set
ki
J

2=z + hjpaimit,

so that 1 < hjy1 < Hj4; and

m (U2 by my, w) — W(z by, my,w) = Upa (25 by, myya, w).

Thus (2.2) becomes

S

U125 hjr, mjp1,w) + Z(g(xi; my - mjpiw) — g(ysma - mypw)) = 0.

=1
Write

’U(Oé): Z e(a\:[fj+1(z;hj+1,mj+1aw))a

2,k 41

u(a) = Z e(ag(a:; my - - 'mj+1w)).
z€B(Qj+1,R)

By the Cauchy-Schwarz inequality,

LAZAmemmﬁma

<(/ 1 ) ) - (/ 1 |v(a>|2|u<a>|%)l/

1/2
= {L;(P,Qj11; wmy - -mj11)Ss j+1(mjr1) } 2,

2

d
Lemma 2.3. Suppose \s = 2s — ky + A is admissible and A > 0. Set

s (bits) (58)

ki + A ki  ki+ A 2k ’
A'=A(1-0)+ kb —1,
Asi1=2(s+1) — ks + A

Then As+1 is admissible.

Proof. When A = 0 then A’ = 0 and the conclusion follows by expressing I (P, R; w)J
as an integral of exponential sums and making a trivial estimate. When A > 0 the
lemma will follow by iterating Lemmas 2.1 and 2.2 as in [8, Lemma 3.1] using the
choice

1 1 1 ke — A\ ,
9.4 — 1 1< i<k
24 ¢ kt+A+<kt kt—i—A)( oy ) (1<7< k)

We note that (2.4) and the bound A < k; imply that
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Also, since £k > 3 and A > 0,

(ke —2)A + A% +2A(5 — A/2ky)*e 1
Hkt =1- 3 < 1.
(ke +A)
Fix € > 0. Since A is admissible, there is an 1 > 0 so that whenever R < Q" we
have I,(Q, R; w) < Q¢ uniformly in w > 1. Let ' be a positive real number

satisfying

€
2. "< (1-
(2.5) n<@=0k)n, 1< - 15k,

and put R = P". Then for each 7, I;(Q;, Rw) < st+s uniformly in w > 1. We
next show by induction on j that

J
(2.6) T j(mj1) < P (H Hz') Q1%
=1
where the implied constant may depend on j as well as f, s,e. First, when j = k;—1
we have Hj,1 = 1. Representing S j11(m) as an integral of exponential sums and
taking a trivial bound gives

2

J
Ssj+1(mjt1) < (H ) I(Qjt1, Ry wmy - - -mjgq)

2
J
As
< P? (H H) Qe

By Lemma 2.2, (2.6) holds for j = k; — 1. Now suppose j < k; — 2 and (2.6) holds

for all larger 5. By Lemma 2.1 and the induction hypothesis,
2

j+1
Saj41(mjs1) < PHHO (H Hi) (M2 R)** Q755"
=1

Hence, by Lemma 2.2
J Qo 3(As+e)
Ts,j(mj_Fl) < P HHZ Q;‘j_'{e 1+ R°P 1/2+0(1)H 1Mf+2 ( J ) )
i=1 Qj+1
By (2.4) and (2.5) the term in the braces is 1 4+ P+°() where

1 1
§=—5t1—kidjr + sbjra — 5bj2(Xs +6) + n's

= —1€¢j+2 + n's < 0.
Therefore (2.6) holds for 0 < j < k¢ — 1. Finally, by (2.5), (2.6) with j = 0 and
Lemma 2.1
Ii11(P, Ryw) < S 0(—) < (MyR)* PrHo@pete = pltold)
where, since 0 = ¢,
L=2s0+42sn+1+0As+¢)=Ast1+ 250 < Asy1 +e.
Since ¢ is arbitrary, the lemma follows. [J

The admissible values of A arising from Lemma 2.3 are precisely the values of
A, arising in [8] for the monomial f(z) = x*¢. Thus, by the proof of Theorem 2.1
of [9], it follows that these values satisfy Ay < 25 — k;y + ke =25/t Hence we have
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Corollary 2.4. For each s > 1, there is an n = n(s) > 0 such that for R < P",
uniformly in w > 1,
Is (P, R, w) < P2s—kzt+ktel—2s/kt .
Remark 1. In Corollary 2.4, the exponent of P tends to 2s—k; = 2s—k+r as
s — 00, which is short by r of the “ideal” exponent 2s — k needed in the application
to the generalized Waring problem. Fortunately, if r is small, we can overcome this
deficiency with a diminishing ranges argument.

Remark 2. We in fact can do a bit better than Corollary 2.4, by taking
advantage of the form of g(z;w) when w becomes large. For example, if w >
c(f, s)QF, the only solutions counted in I,(Q, R;w) are the “diagonal” solutions
corresponding to x; = y; for each 7 and thus I,(Q, R;w) = |«(Q,R)|® < Q°.
Using such ideas, however, does not appear to break the 2s — k; barrier mentioned
in Remark 1, nor increase significantly the rate at which the exponent approaches
2s —k; as s increases. Thus in the application to Waring’s problem, only the second
order terms will be improved.

3. APPLICATION TO WARING’S PROBLEM

Proof of Theorem 1. Suppose k is large and r < k/3 (else Theorem 1 is no stronger
that [10, Theorem 9]). Let n be a large integer, P = [(n/a1)*/*] and s,u fixed
positive integers. For ¢ = 1,... ,u set

Pi — 2—7:I)(1—1/k)i_1

and let
1

pa-1/k)*
s2utl

Q=

Define the generating functions
P
D(a) =) elaf(z)), Fl@)= Y elaf(z)), H@= Y elf()
=1 z€ (P,R) €A (Q,R)

and

G(a) = Ey(a)---Eu(a),  Eia)= Y  e(af(x)) (=1,...,u).

P; <.’E<2Pi

Let R(n) denote the number of solutions of

6k 2s u
(31)  n=f(un)+ flws)+ _Zf(a:i) + _Z flyi) + _Z(f(zn + ()

with

1< w,wa <P, Vi: =z,€ (P,R), y;, € Z(Q,R), P;<z,z <2P,.
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Then )
R(n) = /0 D(a)?F(a)®*G(a)?H(a)*e(—na) da.

We now define the major and minor arcs. For 2 < a < ¢ < a1 PY/2R, (a,q) =1
define

P1/2
Mg,) = {a € 0.1]: o~ /o < T}

Also let

M(1,1) = [0, P2 Fu1— PY/2R 1], m=M(g,a), m=[0,1]\M.

a,q

The major arcs are handled as in Wooley [10, §9], where the function F; () there
is replaced by G(a)?H (a)?®. This gives

/Em D(a)*F(a)%*G(a)*H(a)**e(—na) do
> D(0)2F(0)*G(0)2H(0)* P~*(&(n) + o(1)),

where &(n) = Sas42u+6k+2,7(n). For the minor arcs, we have

(3.2)

/ D(a)?F(a)%*G(a)?H (a)**e(—na) do

1
< P2 sup |F(a)| / [H()*G(a) 2 da.
0

aem

By [10, Theorem 7], for large k we have

sup \F(a)\ < Pl—l/(6tklogk)_

acm

The integral on the right side of (3.2) counts the number of solutions of
D (F(zi) = F(20) + D (fwi) = f(w}) =0
i=1 i=1

with

P; < z;,2; < 2F; vi,vi € (Q, R).

It is straightforward to show that z; = 2} for ¢ = 1,... ,u, which is a consequence
of our choice of the numbers P;. By Corollary 2.4 we obtain

1 1
/ H(a)*G(a)* da < P -- -Pu/ |H(a)|*® do
0 0

< Pl L. PUQQS—(k—T)-l-A
< H0)*G0)?’P~ %, Ki=k—(A+7r)(1—-1/k)"
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where A = (k — r)e'=28/(k=7) Therefore, the left side of (3.2) is is

1
< D(0)2F(0)%*G(0)2H(0)>*P~ %2, K, = Togk +k—(A+7r)e vk,

We now choose

1
s = i(k—r) log(k/r —1)| + 1, u = [klog(4rtlogk)] + 1,

which implies A < er and Ko > k + t?é(:k' Therefore, for P large,

R(n) > D(0)2F(0)°*G(0)2H(0)> P~*(&(n) + 0(1))
and hence

G(f) < 6k + 25+ 2u + 2 < k(log(krt?) + 2loglog k + 10).
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