SIGN CHANGES IN $\pi_{q,a}(x) - \pi_{q,b}(x)$

KEVIN FORD RICHARD H. HUDSON

1. Introduction and summary.

Let

$$\operatorname{li}(x) = \lim_{\epsilon \to 0^+} \int_0^{1-\epsilon} \frac{dt}{\log t} + \int_{1+\epsilon}^x \frac{dt}{\log t}$$

and let $\pi(x)$ denote the number of primes $\leq x$. Also, $\pi_{q,a}(x)$ denotes the number of primes $\leq x$ lying in the progression $a \mod q$. In 1792, Gauss observed that $\pi(x) < \operatorname{li}(x)$ for x < 3,000,000 (see e.g. [E]) and the question of whether or not there are any sign changes of $\pi(x) - \operatorname{li}(x)$ remained open until 1914 when J.E. Littlewood [Li] showed that there exists a positive constant k such that infinitely often both $\pi(x) - \operatorname{li}(x)$ and $\operatorname{li}(x) - \pi(x)$ exceed

$$\frac{kx^{1/2}\log\log\log x}{\log x}.$$

Sign changes are, nonetheless, quite rare and it was not until 1955 that any upper bound was obtained for the first sign change. The upper bound of

$$10^{10^{10^{34}}}$$

was obtained by Skewes [Sk1] on the assumption of the Riemann Hypothesis, and in 1955 [Sk2] he provided the first unconditional upper bound for the first sign change, namely

$$10^{10^{10^{10^{3}}}}$$
.

In 1966, Lehman [Leh] developed a new method based on an explicit formula for $li(x) - \pi(x)$ averaged by a Gaussian kernel and knowledge of zeros of the Riemann zeta function $\zeta(s)$ in the region $|\Im s| \leq 12000$. Lehman's method drastically improves the upper bound for the first sign change. In particular, he proved that it must occur before 1.5926×10^{1165}

¹⁹⁹¹ Mathematics Subject Classification. Primary 11N13, Secondary 11Y35.

and his method was used by te Riele [tR] to lower the bound to 6.6658×10^{370} and by Bays and Hudson [BH5] to lower it further to 1.39822×10^{316} .

In this paper, we generalize Lehman's method, enabling one to compare the number of primes $\leq x$ in any two arithmetic progressions qn+a and qn+b. For reasons given in, e.g., [H2], [RS], negative values of $\pi_{q,b}(x)-\pi_{q,a}(x)$ may be relatively infrequent if b is a quadratic non-residue of q and a a quadratic residue. This phenomenon, first noted by Chebyshev in 1853 for the case q=4, is known as "Chebyshev's bias". It is quite pronounced when q|24, 1 < b < q, (b,q)=1 and a=1, and these cases have been studied extensively from a numerical point of view ([BH1], [BH2], [BH3], [BH4], [Lee], [Sh]) and from a theoretical point of view ([BFHR], [H2], [K1], [K2], [K3], [KT1], [KT2], [Li], [RS]). For example, Bays and Hudson [BH2] showed in 1978 that the smallest x with $\pi_{3,2}(x) < \pi_{3,1}(x)$ is x=608,981,813,029.

Section 2 is devoted to the development of the analog of Lehman's theorem. Our bounds are considerably sharper than in [Leh], but as a consequence the bounds are a bit more complex. In §3 we apply the theorem for q|24 and a=1. Our present knowledge of the zeros of these L-functions is due to Rumely ([Ru1], [Ru2]) and this is insufficient to obtain bounds which are anywhere near "best possible". The bounds, however, are in most cases adequate to localize negative values of $\pi_{q,b}(x) - \pi_{q,1}(x)$.

2. A GENERALIZATION OF LEHMAN'S THEOREM

For non-real numbers z, define

(2.1)
$$\operatorname{li}(e^z) := e^z \int_0^\infty \frac{e^{-t}}{z - t} \, dt$$

and let

(2.2)
$$K(s;\alpha) = \sqrt{\frac{\alpha}{2\pi}} e^{-\alpha s^2/2}.$$

Also, for $\rho = \beta + i\gamma$, $0 < \beta < 1$, define

$$J(\rho) := \int_{\omega - \eta}^{\omega + \eta} K(u - \omega; \alpha) u e^{-u/2} \operatorname{li}(e^{\rho u}) du.$$

Lemma 2.1. If $\rho = \frac{1}{2} + i\gamma$ with $\gamma \neq 0$, $u \geqslant 1$ and $J \geqslant 1$, then

$$\left| \frac{\operatorname{li}(e^{\rho u})}{e^{\rho u}} - \sum_{j=1}^{J} \frac{(j-1)!}{(\rho u)^j} \right| \leqslant \frac{J!}{u^{J+1}} \min \left(\frac{1}{|\gamma|^{J+1}}, \frac{2^{1.5J+2}}{(1+2|\gamma|)^{J+1}} \right).$$

Proof. By (2.1) and repeated integration by parts, we have for non-real z the identity

(2.3)
$$e^{-z} \operatorname{li}(e^z) - \sum_{i=1}^J \frac{(j-1)!}{z^j} = J! \int_0^\infty \frac{e^{-t}}{(z-t)^{J+1}} dt.$$

Now put $z = \rho u$. Since $|\rho u - t| \ge u|\gamma|$, the last integral is $\le (u|\gamma|)^{-J-1}$. If $|\gamma|$ is small, we can do better by deforming the contour. If $\gamma > 0$ let C be the union of the straight line segments from 0 to $\frac{1}{2}(u - iu)$ to u to ∞ and if $\gamma < 0$ let C be the union of the line segments from 0 to $\frac{1}{2}(u + iu)$ to u to ∞ . For $t \in C$, we have

$$|\rho u - t| \geqslant \frac{(1+2|\gamma|)u}{2^{3/2}}.$$

Together with the bound

$$\int_C |e^{-t}| \, dt \leqslant \sqrt{2},$$

this proves the lemma.

Lemma 2.2 (McCurley). Let χ be a Dirichlet character of conductor k and denote by $N(T,\chi)$ the number of zeros of $L(s,\chi)$ lying in the region $s = \sigma + i\gamma$, $0 < \sigma < 1$, $|\gamma| \leq T$. Then

$$\left|N(T,\chi) - \frac{T}{\pi}\log\frac{kT}{2\pi e}\right| \leqslant C_2\log kT + C_3,$$

where

$$C_2 = 0.9185, \qquad C_3 = 5.512.$$

Proof. This is Theorem 2.1 of [M] with $\eta = \frac{1}{2}$.

Corollary 2.3. Suppose g is a continuous, positive, decreasing function for $t \geq T = \frac{2\pi e}{k}$, and $T_2 \geq T_1 \geq T$. Let χ be a Dirichlet character of conductor k and denote by γ the imaginary part of a generic non-trivial zero of $L(s,\chi)$. Then

$$\left| \sum_{|T_1 < |\gamma| \leqslant T_2} g(|\gamma|) - \frac{1}{\pi} \int_{T_1}^{T_2} g(t) \log \left(\frac{kt}{2\pi} \right) dt \right|$$

$$\leq 2g(T_1) (C_2 \log kT_1 + C_3) + C_2 \int_{T_1}^{T_2} \frac{g(t)}{t} dt.$$

Proof. Lemma 2.2 and partial summation.

Corollary 2.4. If $T \ge 150$, $n \ge 2$ and χ is a Dirichlet character of conductor $k \ge 3$, then

$$\sum_{|\gamma|>T} \gamma^{-n} < \frac{T^{1-n}\log(kT)}{3}.$$

Proof. Letting $g(\gamma) = \gamma^{-n}$ in Corollary 2.3, we obtain

$$\sum_{|\gamma|>T} \gamma^{-n} \leqslant T^{1-n} \left(\frac{\log\left(\frac{kT}{2\pi}\right)}{\pi(n-1)} + \frac{1}{\pi(n-1)^2} + \frac{2C_2 \log(kT) + 2C_3 + C_2/n}{T} \right)$$

$$\leqslant T^{1-n} \log(kT) \left(\frac{1}{\pi} + \frac{2C_2}{T} \right) + T^{1-n} \left(\frac{2C_3 + C_2/2}{T} - \frac{\log(2\pi)}{\pi} \right)$$

$$< \frac{1}{3} T^{1-n} \log(kT). \quad \Box.$$

We also use the simple bound

$$(2.4) \int_{y}^{\infty} K(u;\alpha) \, du < \sqrt{\frac{\alpha}{2\pi}} \int_{y}^{\infty} \left(\frac{u}{y}\right) e^{-\alpha u^{2}/2} \, du = \frac{K(y;\alpha)}{\alpha y} \quad (y > 0).$$

We now adopt a notational convention from [Leh]: The notation $f = \vartheta(g)$ means $|f| \leq |g|$.

Lemma 2.5. Suppose

(2.5)
$$\omega \geqslant 30, \quad 0 < \eta \leqslant \omega/30, \quad |\gamma| \leqslant \frac{\alpha \eta}{2}.$$

If $\rho = \frac{1}{2} + i\gamma$, then

$$J(\rho) = e^{i\gamma\omega - \gamma^2/(2\alpha)} \left(\frac{1}{\rho} + \frac{1}{\omega\rho^2} + \frac{2}{\omega^2\rho^3} \right) + Q_1(\gamma) + Q_2(\gamma),$$

where

$$|Q_{1}(\gamma)| \leqslant \frac{6}{(\omega - \eta)^{3}} \min\left(\frac{1}{\gamma^{4}}, \frac{64\sqrt{2}}{(1 + 2|\gamma|)^{4}}\right),$$

$$|Q_{2}(\gamma)| \leqslant \frac{2.2K(\eta; \alpha)}{|\rho|\alpha\eta} + \frac{1.25}{\alpha\omega^{3}|\rho|^{2}} + \frac{1.27e^{-\gamma^{2}/(2\alpha)}}{\omega^{2}\alpha|\rho|}.$$

Proof. Without loss of generality suppose $\gamma > 0$. By Lemma 2.1 and the fact that $\int_{-\infty}^{\infty} K(u; \alpha) du = 1$,

$$\int_{\omega-\eta}^{\omega+\eta} K(u-\omega;\alpha) u e^{-u/2} \mathrm{li}(e^{\rho u}) \, du = I + E,$$

where

$$I = \int_{\omega - \eta}^{\omega + \eta} K(u - \omega; \alpha) u e^{i\gamma u} \sum_{j=1}^{J} \frac{(j-1)!}{(\rho u)^j} du,$$
$$|E| \leqslant \frac{J!}{(\omega - \eta)^J} \min\left(\frac{1}{\gamma^{J+1}}, \frac{2^{1.5J+2}}{(1+2\gamma)^{J+1}}\right).$$

Now make the change of variables $u = \omega - s$ and take J = 3. By (2.5), $|s/\omega| \leq \frac{1}{30}$ and $|\rho\omega| \geq 15$, thus

$$\begin{split} &\frac{I}{e^{i\gamma\omega}} = \int_{-\eta}^{\eta} K(s;\alpha) e^{-i\gamma s} \left(\frac{1}{\rho} + \frac{1}{\omega \rho^2 (1 - s/\omega)} + \frac{2}{\omega^2 \rho^3 (1 - s/\omega)^2} \right) ds \\ &= \int_{-\eta}^{\eta} K(s;\alpha) e^{-i\gamma s} \left(\frac{1}{\rho} + \frac{1}{\omega \rho^2} + \frac{2}{\omega^2 \rho^3} + \frac{s}{\omega^2 \rho^2} + \frac{4s}{\omega^3 \rho^3} + \vartheta \left(\frac{1.25s^2}{\omega^3 \rho^2} \right) \right) ds \\ &= \left(\frac{1}{\rho} + \frac{1}{\omega \rho^2} + \frac{2}{\omega^2 \rho^3} \right) I_0 + \frac{I_1}{\omega^2 \rho^2} \left(1 + \frac{4}{\omega \rho} \right) + \vartheta \left(I_2' \frac{1.25}{\omega^3 \rho^2} \right) \end{split}$$

where

$$I_n = \int_{-\eta}^{\eta} K(s; \alpha) s^n e^{-i\gamma s} ds \qquad (n = 0, 1)$$

and

$$I_2' = \int_{-\infty}^{\infty} K(s; \alpha) s^2 ds = 1/\alpha.$$

By (2.2) and (2.4), we have

$$I_{0} = e^{-\gamma^{2}/(2\alpha)} + \vartheta \left(2 \int_{\eta}^{\infty} K(s; \alpha) \, ds \right)$$
$$= e^{-\gamma^{2}/(2\alpha)} + \vartheta \left(\frac{2K(\eta; \alpha)}{\alpha \eta} \right).$$

In addition, by (2.5) we have

$$|I_{1}| = \left| \frac{2i \sin \gamma \eta}{\alpha} K(\eta; \alpha) - \frac{i\gamma}{\alpha} I_{0} \right|$$

$$\leq \left(\frac{2}{\alpha} + \frac{2\gamma}{\alpha^{2} \eta} \right) K(\eta; \alpha) + \frac{\gamma e^{-\gamma^{2}/(2\alpha)}}{\alpha}$$

$$\leq \frac{3K(\eta; \alpha) + \gamma e^{-\gamma^{2}/(2\alpha)}}{\alpha}.$$

We thus obtain

$$\left| I - e^{i\gamma\omega - \gamma^2/(2\alpha)} \left(\frac{1}{\rho} + \frac{1}{\omega\rho^2} + \frac{2}{\omega^2\rho^3} \right) \right|$$

$$\leq \frac{1.27\gamma e^{-\gamma^2/(2\alpha)}}{\omega^2 |\rho|^2 \alpha} + \frac{1.25}{\alpha\omega^3 |\rho|^2} + \left(\frac{3.8}{\omega^2 |\rho|^2 \alpha} + \frac{2.16}{|\rho|\alpha\eta} \right) K(\eta; \alpha).$$

By (2.5), $\omega^2 |\rho| \geqslant 450\eta$, and the lemma follows. \square

The next lemma, essentially due to Lehman ([Leh], §5), shows how to deal with the contribution from large γ without needing to assume the truth of Riemann Hypothesis.

Lemma 2.6. Suppose that

$$(2.6) \quad |\gamma| \geqslant 100, \quad \omega \geqslant 30, \quad \eta \leqslant \omega/15, \quad 1 \leqslant N \leqslant \min\left(\frac{|\gamma|\eta}{2}, \frac{\alpha\omega^2}{100}\right).$$

Writing $\rho = \beta + i\gamma$, with $0 < \beta < 1$, we have

$$|J(\rho)| \leqslant e^{(\beta - 1/2)(\omega + \eta)} \left(\frac{2.4\sqrt{\alpha}e^{-\alpha\eta^2/8}}{\gamma^2} + \frac{2.8\sqrt{N}}{|\gamma|^{N+1}} \left(\frac{N\alpha}{e} \right)^{N/2} \right).$$

Proof. By Lemma 2.5, we expect that $|J(\rho)|$ is about $|\rho|^{-1}e^{(\beta-1/2)\omega-\gamma^2/(2\alpha)}$. Suppose without loss of generality that $\gamma > 100$. As in [Leh], we begin by considering the function

$$f(s) := \rho s e^{-\rho s} \operatorname{li}(e^{\rho s}) e^{-\alpha(s-\omega)^2/2}$$

in the region $-\pi/4 \leqslant \arg s \leqslant \pi/4$, |s| > 1. This function is analytic in this sector because $\gamma > 100$. Then

$$J(\rho) = \frac{1}{\rho} \sqrt{\frac{\alpha}{2\pi}} I_1, \quad I_1 = \int_{\omega - \eta}^{\omega + \eta} e^{(\rho - 1/2)u} f(u) du.$$

By repeated integration by parts,

$$I_{1} = \sum_{n=0}^{N} \frac{(-1)^{n} e^{(\rho - \frac{1}{2})\omega}}{(\rho - \frac{1}{2})^{n+1}} \left(e^{(\rho - \frac{1}{2})\eta} f^{(n)}(\omega + \eta) - e^{-(\rho - \frac{1}{2})\eta} f^{(n)}(\omega - \eta) \right) + \frac{(-1)^{N}}{(\rho - \frac{1}{2})^{N}} \int_{\omega - \eta}^{\omega + \eta} e^{(\rho - \frac{1}{2})u} f^{(N)}(u) du.$$

Choose $r \leq \omega/10$. Then

(2.7)
$$f^{(n)}(u) = \frac{n!}{2\pi i} \oint_{|s-u|=r} \frac{f(s)}{(s-u)^{n+1}} ds.$$

By (2.3) we have

$$f(s) = e^{-\alpha(s-\omega)^2/2} \left(1 + \frac{1}{\rho s} + \vartheta \left(\frac{2|\rho s|}{|\Im \rho s|^3} \right) \right).$$

Since $|\rho s| \ge 2000$ and $|\Im \rho s| \ge \frac{1}{2} |\rho s|$, it follows that

$$|f(s)| \le 1.001e^{-(\alpha/2)\Re(s-\omega)^2}$$
.

Writing $s = u + re^{i\phi}$ and using (2.7), we deduce

$$(2.8) |f^{(n)}(u)| \leqslant \frac{1.001n!}{2\pi r^n} \int_{-\pi}^{\pi} e^{(\alpha/2)(r^2 - r^2 \cos^2 \phi - (r\cos\phi + u - \omega)^2)} d\phi.$$

When $u = \omega \pm \eta$, we take $r = \eta/2$ and get

$$|f^{(n)}(u)| \leqslant \frac{1.001n!}{2\pi(\eta/2)^n} e^{-\alpha\eta^2/8} \int_{-\pi}^{\pi} e^{-(\alpha\eta^2/4)(1-\cos\phi)^2} d\phi$$
$$\leqslant 1.001n! (2/\eta)^n e^{-\alpha\eta^2/8},$$

since the integrand above is ≤ 1 . We then obtain

$$|I_1| \leqslant e^{(\beta - \frac{1}{2})(\omega + \eta)} \left(\frac{2.002e^{-\frac{1}{8}\alpha\eta^2}}{\gamma} \sum_{n=0}^{N} n! \left(\frac{2}{\gamma\eta} \right)^n + \gamma^{-N} \int_{\omega - \eta}^{\omega + \eta} |f^{(N)}(u)| du \right).$$

Since $n! \leq 2(N/2)^n$ for $n \leq N$ and $N/(\gamma \eta) \leq \frac{1}{2}$, the sum on n is ≤ 3 . By (2.8),

$$\int_{\omega-\eta}^{\omega+\eta} |f^{(N)}(u)| \, du \leqslant \frac{1.001N!}{2\pi r^N} e^{\alpha r^2/2} \int_{-\pi}^{\pi} e^{-\frac{\alpha}{2}r^2 \cos^2 \phi} \int_{-\eta}^{\eta} e^{-\frac{\alpha}{2}(t+r\cos\phi)^2} \, dt \, d\phi$$

$$\leqslant \frac{1.001N!}{2\pi r^N} e^{\alpha r^2/2} \int_{-\pi}^{\pi} \int_{-\infty}^{\infty} e^{-\frac{\alpha}{2}t^2} \, dt \, d\phi$$

$$= \frac{1.001N!}{r^N} e^{\alpha r^2/2} \sqrt{\frac{2\pi}{\alpha}}.$$

Taking $r = \sqrt{N/\alpha}$ and using the inequality $N! \leqslant e^{1-N} N^{N+1/2}$ gives

$$\int_{\omega-\eta}^{\omega+\eta} |f^{(N)}(u)| \, du \leqslant 1.001 e \sqrt{\frac{2\pi N}{\alpha}} \left(\frac{\alpha e}{N}\right)^{-N/2}.$$

The lemma now follows. \Box

Theorem 1. Suppose χ is a primitive Dirichlet character of conductor k, and all the nontrivial zeros $\rho = \beta + i\gamma$ of $L(s,\chi)$ with $|\gamma| \leq A$ have real part $\beta = \frac{1}{2}$. Suppose that

(2.9)
$$150 \leqslant T \leqslant A, \quad \omega \geqslant 30, \quad \eta \leqslant \omega/30, \quad \frac{2A}{\eta} \leqslant \alpha \leqslant A^2.$$

Then

$$\sum_{\rho} J(\rho) = \sum_{|\gamma| \leqslant T} e^{i\gamma\omega - \gamma^2/(2\alpha)} \left(\frac{1}{\rho} + \frac{1}{\omega\rho^2} + \frac{2}{\omega^2\rho^3} \right) + \sum_{i=1}^4 R_i(\chi, T),$$

where

$$\begin{split} |R_{1}(\chi,T)| &\leqslant \frac{6}{(\omega-\eta)^{3}} \sum_{\rho} \min\left(\frac{1}{\gamma^{4}}, \frac{64\sqrt{2}}{(1+2|\gamma|)^{4}}\right), \\ |R_{2}(\chi,T)| &\leqslant \left(\frac{2.2K(\eta;\alpha)}{\alpha\eta} + \frac{1.27}{\alpha\omega^{2}}\right) \sum_{|\gamma| \leqslant A} \frac{1}{|\rho|} + \frac{1.25}{\alpha\omega^{3}} \sum_{\rho} \frac{1}{|\rho|^{2}}, \\ |R_{3}(\chi,T)| &\leqslant e^{-T^{2}/(2\alpha)} \log(kT) \left(\frac{\alpha}{\pi T^{2}} + \frac{4.3}{T}\right), \\ |R_{4}(\chi,T)| &\leqslant e^{(\omega+\eta)/2} \log(kA) \left(\frac{0.8\sqrt{\alpha}e^{-\alpha\eta^{2}/8}}{A} + 2.56A\alpha^{-1/2}e^{-A^{2}/(2\alpha)}\right). \end{split}$$

If the Riemann Hypothesis is true for $L(s,\chi)$ (i.e. all the nontrivial zeros have real part $\frac{1}{2}$), then the term R_4 may be omitted, as may the condition $\alpha \leqslant A^2$. Also, if A = T, then $R_3(\chi, T) = 0$.

Proof. The main terms in the theorem come from the main terms of Lemma 2.5 for $|\gamma| \leq T$. The first part of the theorem follows by taking

$$R_{i} = R_{i}(\chi, T) = \sum_{|\gamma| \leqslant A} Q_{i}(\gamma), \qquad (i = 1, 2)$$

$$R_{3} = R_{3}(\chi, T) = \sum_{T < |\gamma| \leqslant A} e^{i\gamma\omega - \gamma^{2}/(2\alpha)} \left(\frac{1}{\rho} + \frac{1}{\omega\rho^{2}} + \frac{2}{\omega^{2}\rho^{3}}\right),$$

$$R_{4} = R_{4}(\chi, T) = \sum_{|\alpha| > A} J(\rho).$$

The upper bounds for R_1 and R_2 follow from Lemma 2.5. Since $\omega \geqslant 30$, we have

$$\left| \frac{1}{\rho} + \frac{1}{\omega \rho^2} + \frac{2}{\omega^2 \rho^3} \right| \leqslant \frac{1}{\gamma}.$$

Thus, by Corollary 2.3, we find that

$$|R_{3}| \leqslant \sum_{|\gamma|>T} \frac{e^{-\gamma^{2}/(2\alpha)}}{\gamma}$$

$$\leqslant \int_{T}^{\infty} \frac{e^{-t^{2}/(2\alpha)}}{\pi t} \log\left(\frac{kt}{2\pi}\right) dt + \frac{2e^{-T^{2}/(2\alpha)}}{T} (C_{2}\log(kT) + C_{3})$$

$$+ C_{2} \int_{T}^{\infty} \frac{e^{-t^{2}/(2\alpha)}}{t^{2}} dt.$$

If g(t) is positive and decreasing for $t \ge T$ we have

$$\int_{T}^{\infty} g(t)e^{-bt^{2}} dt < \frac{g(T)}{T} \int_{T}^{\infty} te^{-bt^{2}} dt = \frac{g(T)e^{-bT^{2}}}{2bT}.$$

Therefore,

$$|R_3| \leqslant e^{-T^2/(2\alpha)} \left(\frac{\alpha \log(kT/(2\pi))}{\pi T^2} + \frac{2C_2 \log(kT) + 2C_3}{T} + \frac{\alpha C_2}{T^3} \right).$$

The desired bound for R_3 now follows from the bounds $kT \ge 100$ and

$$\frac{\alpha C_2}{T^3} \leqslant \frac{\alpha \log(2\pi)}{\pi T^2}.$$

Lastly, Corollary 2.4 and Lemma 2.6 give

$$|R_4| \leqslant \sum_{|\gamma| > A} |J(\rho)|$$

$$\leqslant e^{(\omega + \eta)/2} \log(kA) \left(\frac{0.8\sqrt{\alpha}e^{-\alpha\eta^2/8}}{A} + 0.94\sqrt{N} \left(\frac{N\alpha}{eA^2} \right)^{N/2} \right).$$

We take $N = \lfloor A^2/\alpha \rfloor$ and note that (2.9) implies (2.6). \square

Finally, we need explicit formulas for the number of primes in an arithmetic progression. For a primitive Dirichlet character χ modulo $k \geq 3$, let a=0 if $\chi(-1)=1$ and a=1 if $\chi(-1)=-1$. By an analog of the Riemann-von Mangoldt formula ([La, p. 532]), if $L(s,\chi)$ has no positive real zeros then

(2.10)

$$S(\chi; x) := \sum_{\substack{p,m \\ p^m \leqslant x}} \frac{\chi(p)^m}{m}$$

$$= -\sum_{\rho} \text{li}(x^{\rho}) + \int_x^{\infty} \frac{dy}{y^{1-a}(y^2 - 1) \log y} + (1 - a) \log \log x + K_a,$$

where

$$K_{0} = C - \log \left(\frac{\tau(\chi)\pi}{2k} L(1, \overline{\chi}) \right),$$

$$K_{1} = \log \left(\frac{\tau(\chi)}{i\pi} L(1, \overline{\chi}) \right),$$

and

$$\tau(\chi) = \sum_{m=1}^{q} \chi(m) e^{2\pi i m/q}.$$

Here $C=0.5772\ldots$ is the Euler-Mascheroni constant and $\log z$ refers to the principal branch of the logarithm. The values of $L(1,\chi)$ are computed easily by means of the formula

$$\tau(\chi)L(1,\overline{\chi}) = -\sum_{i=1}^{k-1} \chi(i) \log(1 - e^{2\pi i j/k}).$$

Also, the integral in (2.10) is less than 1/x for x > 10. The last formula we need is

(2.11)
$$\pi_{q,a}(x) = \frac{1}{\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi \bmod q}} \overline{\chi}(a) S(\chi; x) - \sum_{\substack{p,m \\ p^m \leqslant x, m \geqslant 2 \\ p^m \equiv a \pmod q}} \frac{1}{m}.$$

In practice the m=2 terms will be very significant, while the terms with $m \ge 3$ will be negligible. In fact, we have

(2.12)
$$\sum_{\substack{p^m \leqslant x \\ m \ge 3}} \frac{1}{m} \leqslant \frac{1.3x^{1/3}}{\log x}, \qquad (x \geqslant e^{30})$$

which follows easily from the inequality

$$\pi(x) \leqslant \frac{x}{\log x} + \frac{1.5x}{\log^2 x} \qquad (x > 1)$$

given by Theorem 1 of Rosser and Schoenfeld [RoS]. Lastly, if χ_0 is the primitive character (of order q_0) which induces χ , then

(2.13)
$$|S(\chi_{0}; x) - S(\chi; x)| \leq \sum_{\substack{p^{m} \leq x \\ p \mid q, p \nmid q_{0}}} \frac{1}{m} \leq \sum_{\substack{p \mid q, p \nmid q_{0}}} \left(1 + \log \frac{\log x}{\log p} \right) \\ \leq |\{p : p \mid q, p \nmid q_{0}\}| (\log \log x + 1 - \log 2).$$

Here we have used the inequality $\sum_{n \leqslant x} \frac{1}{n} \leqslant 1 + \log x$.

3. Primes in progressions modulo 3, 4, 8, 12 and 24 For brevity, write

$$\Delta_{q,b,1}(x) := \pi_{q,b}(x) - \pi_{q,1}(x).$$

In this section we give new results on the location of negative values of $\Delta_{q,b,1}(x)$. Throughout we assume q|24, 1 < b < q and (b,q) = 1. As noted previously, such negative values are quite rare. The smallest x giving

 $\Delta_{4,3,1}(x) < 0$ is x = 26861, discovered by Leech [Lee] in 1957. Shanks [Sh] computed $\Delta_{8,b,1}(x)$ for b = 3,5,7 and $x \leq 10^6$ and found that none of the functions takes negative values. Extensive computations by Bays and Hudson in the 1970s ([BH1],[BH2],[BH3],[BH4]) for $x \leq 10^{12}$ led to the discovery of several more "negative regions" for $\Delta_{4,3,1}(x)$, as well as a single region for $\Delta_{3,2,1}(x)$, a single region for $\Delta_{24,13,1}(x)$ and two regions for $\Delta_{8,5,1}(x)$. By "negative region" we mean an interval $[x_1,x_2]$ where the corresponding function is negative a large percentage of time. It is not well-defined, but reflects the observation that negative values of the functions $\Delta_{q,b,1}(x)$ occur in "clumps". For example, $\Delta_{3,2,1}(x) < 0$ for about 15.9% of the integers in the interval [608981813029, 610968213796]. On the other hand, the computations show that

$$\Delta_{q,b,1}(x) \geqslant 0 \qquad (x \leqslant 10^{12})$$

for

$$(3.1) q = 8, b \in \{3, 7\} and q = 24, b \in \{5, 7, 11, 17, 19, 23\}.$$

With modern computers, the search could easily be extended to 10^{14} or even 10^{15} , and we will show that in fact there are regions in this range where $\Delta_{q,b,1}(x) < 0$ for some of the pairs q, b given in (3.1). Our method, though, takes only seconds versus weeks for an exhaustive search.

From a theoretical standpoint, Littlewood [Li] proved in 1914 that $\Delta_{4,3,1}(x)$ and $\Delta_{3,2,1}(x)$ change sign infinitely often. Knapowski and Turán (Part II of [KT1]) generalized this substantially, showing that $\Delta_{q,b,1}(x)$ changes sign infinitely often, whenever q|24, 1 < b < q and (b,q) = 1 (in addition to other q, b). Later papers ([KT1],[KT2]) deal with the frequency of sign changes, but the bounds for the first sign change are of the "towering exponentials" type, similar to Skewes' results.

In what follows, χ_k denotes the unique primitive character modulo k and $\chi_{k,i}$ $(i=1,\ldots,h)$ denote the primitive characters modulo k if there are more than one. In particular, $\chi_{8,1}(-1)=-1$ and $\chi_{24,1}(-1)=-1$. Table 1 below lists some parameters which we will need. Here

$$\Sigma_1 = \sum_{\rho} \frac{1}{|\rho|^2}, \quad \Sigma_2 = \sum_{\rho} \min\left(\frac{1}{\gamma^4}, \frac{64\sqrt{2}}{(1+2|\gamma|)^4}\right), \quad \Sigma_3 = \sum_{|\gamma| \leqslant 10000} \frac{1}{|\rho|}.$$

The entries in the second, third, and fourth columns are rigorous upper bounds, obtained from Rumely's lists of zeros [Ru2] and Corollary 2.4. The number N denotes the number of zeros with $0 < \gamma < 10000$. It is desirable in applications to know the zeros of all the required L-functions to the same height. Rumely [Ru1] originally computed zeros to height 10000 for characters with conductor ≤ 13 and to height 2600 for other characters. For the two primitive characters modulo 24, Rumely's original programs

were run to compute the zeros to height T=10000, and the output was checked against his original list of zeros to height 2600. In all of our computations, we take T=10000 for every character. Recently Rumely [Ru2] has extended the computations to height 100000 for characters of conductor < 10. So for such characters we may take A=100000.

Char.	Σ_1	Σ_2	Σ_3	N	a	$ au(\chi)L(1,\overline{\chi})$	K_a
$\overline{\chi_3}$	0.114	0.00070	11.29	11891	1	$(\pi/3)i$	$-\log 3$
χ_4	0.156	0.00186	12.10	12349	1	$(\pi/2)i$	$-\log 2$
$\chi_{8,1}$	0.317	0.01336	14.14	13452	1	πi	0
$\chi_{8,2}$	0.236	0.00442	13.92	13452	0	$2\log(1+\sqrt{2})$	$1.6382\dots$
χ_{12}	0.331	0.01120	15.12	14097	0	$2\log(2+\sqrt{3})$	$1.6420\dots$
$\chi_{24,1}$	0.798	0.13683	17.61	15200	1	$2\pi i$	$\log 2$
$\chi_{24,2}$	0.553	0.04239	17.24	15200	0	$4\log(\sqrt{2}+\sqrt{3})$	$1.0877\dots$

Table 1.

When q|24, all the characters modulo q are real, and furthermore the only quadratic residue modulo q is 1. When $x \ge e^{32.3}$, for each character in the table,

$$|(1-a)\log\log x + K_a| \le |\log\log x + \log 3| \le 0.00312 \frac{x^{1/3}}{\log x}.$$

Further, if χ_0 is the primitive character (modulo q_0) which induces χ (for one of the seven characters in Table 1), then

$$(\log \log x + 0.31) |\{p : p|q, p \nmid q_0\}| \le \log \log x + 0.31 \le 0.0026 \frac{x^{1/3}}{\log x}.$$

Together with (2.10), (2.11), (2.12) and (2.13), we obtain the formula

$$(3.2) \ \pi_{q,b}(x) - \pi_{q,1}(x) = \frac{2}{\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi(b) = -1}} \sum_{\rho} \operatorname{li}(x^{\rho}) + \frac{\pi(\sqrt{x})}{2} + \vartheta\left(\frac{1.31x^{1/3}}{\log x}\right).$$

We need a tight upper bound on $\pi(\sqrt{x})$, given by the next lemma.

Lemma 3.1. For $x \ge 10^{14}$, we have $\pi(x) \le 1.000011 \text{ li}(x)$.

Proof. From Table 3 of [Ri], we have $\pi(10^{14}) < \text{li}(10^{14})$. Defining $\theta(x) = \sum_{p \leqslant x} \log p$, we have

$$|\theta(x) - x| \le 0.0000055x$$
 $(x \ge e^{32}),$

which follows from Theorem 5.1.1 of [RR], upon taking $x = e^{32}$, m = 18, H = 70000000, and $\delta = 6.59668 \times 10^{-8}$. By partial summation, for $x \ge 10^{14}$ we obtain

$$\pi(x) \leqslant \operatorname{li}(10^{14}) + \int_{10^{14}}^{x} \frac{d\theta(t)}{\log t}$$
$$\leqslant (1 + 2(0.0000055))\operatorname{li}(x). \quad \Box$$

Define

$$W(\chi;x) = \sum_{\rho} \mathrm{li}(x^{\rho}),$$

where the sum is over zeros ρ of $L(s,\chi)$ lying in the critical strip. Since we are primarily interested in locations where $\pi_{q,b}(x) - \pi_{q,1}(x)$ is negative, we apply Lemma 3.1 to obtain from (3.2) the inequality

$$\pi_{q,b}(x) - \pi_{q,1}(x) \leqslant \frac{2}{\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi(b) = -1}} W(\chi; x) + \frac{1}{2} (1.000011) \operatorname{li}(\sqrt{x}) + \frac{1.31 x^{1/3}}{\log x}.$$

It is easy to show that

$$\operatorname{li}(x) \leqslant \frac{x}{\log x} \left(1 + \frac{1}{\log x} + \frac{2}{\log^2 x} + \frac{h(x)}{\log^3 x} \right),$$

where

$$h(x) = \begin{cases} 8.326 & e^{16} \le x < e^{21} \\ 7.538 & e^{21} \le x \le e^{29.3} \\ 7 & x \ge e^{29.3}. \end{cases}$$

By Theorem 1, we therefore have

Theorem 2. Suppose that $\omega - \eta \geqslant 32.3$ and $0 < \eta \leqslant \omega/30$. Suppose q|24, (b,q)=1 and 1 < b < q. For each Dirichlet character χ modulo q with $\chi(b)=-1$, suppose that all the zeros of $L(s,\chi)$ which lie in the rectangle $0 < \Re s < 1, -A_{\chi} \leqslant \Im s \leqslant A_{\chi}$, actually lie on the critical line $\Re s = \frac{1}{2}$. Further suppose that

$$150 \leqslant T_{\chi} \leqslant A_{\chi}, \qquad \frac{2A_{\chi}}{\eta} \leqslant \alpha \leqslant A_{\chi}^{2}$$

for every χ . Then

$$\int_{\omega-\eta}^{\omega+\eta} K(u-\omega;\alpha) u e^{-u/2} (\pi_{q,b}(e^u) - \pi_{q,1}(e^u)) du \leqslant$$

$$(1.000011) \left(1 + \frac{2}{\omega-\eta} + \frac{8}{(\omega-\eta)^2} + \frac{8h(e^{(\omega-\eta)/2})}{(\omega-\eta)^3} \right) + 1.31e^{-(\omega-\eta)/6}$$

$$+ \frac{2}{\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi(b)=-1}} \left(\sum_{|\gamma|\leqslant T_\chi} e^{i\gamma\omega - \frac{\gamma^2}{2\alpha}} \left(\frac{1}{\rho} + \frac{1}{\omega\rho^2} + \frac{2}{\omega^2\rho^3} \right) + \sum_{i=1}^4 |R_i(\chi, T_\chi)| \right).$$

The error terms $R_i(\chi, T_{\chi})$ are as given in Theorem 1, with $T = T_{\chi}$ and $A = A_{\chi}$. Furthermore, if $A_{\chi} = T_{\chi}$ then the corresponding $R_3(\chi, T) = 0$, and if the Riemann Hypothesis holds for $L(s, \chi)$, then we have $R_4(\chi, T) = 0$ and the condition $\alpha \leq A_{\chi}^2$ may be omitted.

Locating likely candidates for regions where $\Delta_{q,b,1}(x)$ takes negative values is relatively simple. We search for values of ω for which

$$K^* = K^*(q, b; \omega) = \frac{\operatorname{li}(\sqrt{x}) \log x}{2\sqrt{x}} + \frac{2}{\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi(b) = -1}} \sum_{|\gamma| \leqslant T_{\chi}} \frac{e^{i\gamma\omega}}{\rho} < 0.$$

Heuristically, K^* is a good predictor for the average of $ue^{-u/2}\Delta_{q,b,1}(e^u)$ for u near ω . For example, $K^*(24,13;\omega)$ reaches a relative minimum of -0.15873 at about $\omega=27.617477$, while Bays and Hudson [BH3] computed at $x=9.866\times 10^{11}\approx e^{27.61753}$ the value $\Delta_{24,13,1}(x)=-6091\approx -0.169357\frac{\sqrt{x}}{\log x}$ (It is possible that $\Delta_{24,13,1}(x)$ takes smaller values in this vicinity, but this is the smallest value listed in the paper). Using K^* as an approximation for $ue^{-u/2}\Delta_{q,b,1}(e^u)$ is also useful in computing a numerical value for Chebyshev's bias (see [RS], [BFHR]).

In practice, since ω is large, η is small, and T is large ($\geqslant 10000$), the most critical of the error terms is $R_4(\chi,T_\chi)$ because it controls the maximum practical value for α . We want to take α as large as possible, so the sums over $e^{i\gamma\omega-\gamma^2/(2\alpha)}/\rho$, which are required to be "large" negative, are not damped out too much by the $e^{-\gamma^2/(2\alpha)}$ factor.

The computations were performed with a C program running on a SUN Ultra-10 workstation using double precision floating point arithmetic, which provides about 16 digits of precision. The zeros of the L-functions in Rumely's lists are all accurate to within 10^{-12} . Values computed for the right side of the inequality in Theorem 2 were rounded up in the 4th decimal place.

Theorem 3. For each row of Tables 2 and 3 for which a value of K is given, we have

(3.3)
$$\min_{\omega - \eta \leqslant u \leqslant \omega + \eta} u e^{-u/2} (\pi_{q,b}(e^u) - \pi_{q,1}(e^u)) \leqslant K.$$

Proof. Take the indicated values of the parameters in Theorem 2. Here $T_{\chi} = 10000$ for every χ , $A_{\chi} = 100000$ in Table 2 and $A_{\chi} = 10000$ in Table 3. In the case where a value of K is not given, we could not prove that K < 0 with any choice of parameters. \square

\overline{q}	b	ω	<i>K</i> *	η	α	K
3	2	45.12686	-0.0798	0.02	10^{7}	-0.0650
3	2	58.36855	-0.1710	0.02	10^{7}	-0.1525
4	3	2179.77584	-0.8109	0.05	4000000	-0.7761
4	3	78683.67818	-1.0480	2.00	120000	-0.8372
8	3	43.36630	-0.0249	0.02	10^{7}	-0.0013
8	3	54.94255	-0.0490	0.02	10^{7}	-0.0280
8	5	32.89388	-0.0716	0.02	10^{7}	-0.0503
8	5	34.46826	-0.0051			
8	5	57.48058	-0.2136	0.02	10^{7}	-0.1915
8	7	32.89284	-0.0136			
8	7	45.34991	-0.0868	0.02	10^{7}	-0.0508
8	7	48.79950	-0.1889	0.02	10^{7}	-0.1724
12	11	187.53674	-0.0410	0.02	10^{7}	-0.0191
12	11	191.89007	-0.0415	0.02	10^{7}	-0.0182

Table 2.

Example. The "error terms" R_3 and R_4 force α to be less than $\min(A^2/\omega, T^2)$ for practical purposes. For row 5 of Table 2, with the indicated values of the parameters, we compute (rounded in the last place after the decimal point)

char	sum on ρ	R_1	R_2	R_3	R_4
$\overline{\chi_4}$	-0.802723684	0.000000137	0.000000002	0.002303420	0
$\chi_{8,2}$	-1.308816425	0.000000326	0.000000003	0.002454092	0

Here the second column is the sum over $|\gamma| \leq T_{\chi}$ in Theorem 2. The first line of the right side of the inequality in Theorem 2 is computed as 1.0521043. All of these values are rounded in the last decimal place.

Corollary 4. For each $b \in \{3,5,7\}$, $\pi_{8,b}(x) < \pi_{8,1}(x)$ for some $x < 5 \times 10^{19}$. For each $b \in \{5,7,11\}$, $\pi_{12,b}(x) < \pi_{12,1}(x)$ for some $x < 10^{84}$. For each $b \in \{5,7,11,13,17,19,23\}$, $\pi_{24,b}(x) < \pi_{24,1}(x)$ for some $x < 10^{353}$. Finally, if the zeros of $L(s,\chi_4)$ lying in the critical strip to height A = 630000 all have real part equal to $\frac{1}{2}$, then for some x in the vicinity of $e^{78683.7}$ we have

$$\pi_{4,1}(x) - \pi_{4,3}(x) > \frac{\sqrt{x}}{\log x}.$$

The significance of the last statement is that we now know (once the zeros of $L(s,\chi_4)$ are computed to height 630000) a specific region where $\pi_{4,1}(x)$ runs ahead of $\pi_{4,3}(x)$ as much as it usually runs behind (This is the smallest x for which $K^* < -1$). The idea is that the terms on the right side of (3.2) corresponding to the zeros ρ are oscillatory, so that on average $\Delta_{q,b,1}(x)$ is about $\pi(\sqrt{x})/2 \approx \sqrt{x}/\log x$. Subject to certain

\overline{q}	b	ω	<i>K</i> *	η	α	K
12	5	39.12815	-0.0071			
12	5	69.00554	-0.0210			
12	5	73.93306	-0.0117			
12	5	88.98310	-0.0104			
12	5	102.08460	-0.0344			
12	5	103.73736	-0.0611	0.03	750000	-0.0445
12	7	39.12144	-0.2063	0.02	1550000	-0.1410
12	7	45.87795	-0.1468	0.02	1400000	-0.0871
24	5	161.18837	-0.1176	0.04	525000	-0.0920
24	7	92.49622	-0.0693	0.03	830000	-0.0530
24	11	111.54595	-0.0023			
24	11	812.63677	-0.0526	0.20	118000	-0.0104
24	13	34.14425	-0.4810	0.02	1700000	-0.3521
24	17	34.05708	-0.0387			
24	17	34.19749	-0.0208	0.02	1650000	-0.0110
24	19	34.20322	-0.1473	0.02	1650000	-0.1362
24	23	43.45318	-0.0204			
24	23	94.46170	-0.0376	0.03	800000	-0.0113

Table 3.

unproven hypotheses, this notion can be made very precise (e.g. [RS]). The two rows for q = 4 were chosen because of the large negative values of K^* .

In Tables 2 and 3, we have confined our calculations to locating regions with $x \ge e^{32.3} \approx 10^{14}$, smaller x being easily dealt with by exhaustive computer search. The listed values of K^* and K are rounded up in the last decimal place. For each pair (q, b) except (4, 3), the first few likely regions of negative values of $\Delta_{q,b,1}(x)$ are listed. The lists continue until a region is found where a negative value can be proved with A = 10000. In some regions, a negative value can be proved with a larger value of A and in other regions no negative value could be proved even with $A=\infty$. These latter rows have no K value listed. However, when $\omega \leqslant 44$ or so, it is possible to find specific values of x with $\Delta_{q,b,1}(x) < 0$ by computing this function exactly by means of Hudson's extension of Meissel's formula [H1]. This formula makes it practical to compute exact values of $\pi_{q,a}(x)$ for x as large as 10^{20} . The first author is currently writing a computer program for this, and one preliminary result can be announced now. At $x = 1.9282 \times 10^{14}$ we have $\Delta_{8.7.1}(x) = -105$, and this computation took 10 minutes on a Sun Ultra-10 workstation.

For all pairs q, b, the values of ω given in Tables 2 and 3 represent the minimum of K, and this doesn't necessarily correspond to the minimum of K^* . The difference $|K - K^*|$ varies substantially, and this is expected due

Graph 1. K vs. K^* ; q = 12, b = 11, $\eta = 0.02$, $\alpha = 10^7$, A = 100000.

to the factors $e^{-\gamma^2/(2\alpha)}$ in Theorem 2. To illustrate the difference, Graph 1 depicts the functions K and K^* for q=12, b=11 in the vicinity of $e^{187.536}$. Also as expected, larger values of A, which permit larger values of α , narrow the difference appreciably.

A shortcoming of our method is the inability to compare three or more progressions. For example, Shanks [Sh] asked if $\pi_{8,1}(x)$ will ever be greater than each of $\pi_{8,3}(x)$, $\pi_{8,5}(x)$ and $\pi_{8,7}(x)$ simultaneously. Based on computations of the functions K^* , it is likely that this occurs in the vicinity of $e^{389.3712}$, but this cannot be proved by the methods of this paper. It is, however, possible to detect negative values of any linear combination of the functions $\pi_{q,b}(x)$. For example, by Theorem 2 it follows that for some x with $|\log x - 158.64233| \leq 0.01$, we have

(3.4)
$$\pi_{8,1}(x) > \frac{1}{3}(\pi_{8,3}(x) + \pi_{8,5}(x) + \pi_{8,7}(x)).$$

We are really looking for negative values of $\frac{1}{3}(\Delta_{8,3,1}(x) + \Delta_{8,5,1}(x) + \Delta_{8,7,1}(x))$, and take A = 100000, $\alpha = 10^7$ and $\eta = 0.02$ and obtain K < -0.0265.

Acknowledgments. The authors would like to thank Robert Rumely for providing the lists of the zeros of L-functions and copies of his original programs. The authors also thank Peter Sarnak for valuable discussions and encouragement.

REFERENCES

- [BH1] C. Bays and R. H. Hudson, The segmented sieve of Eratosthenes and primes in arithmetic progressions to 10¹², Nordisk Tidskr. Inform. (BIT) 17 (1977), 121–127.
- [BH2] _____, Details of the first region of integers x with $\pi_{3,2}(x) < \pi_{3,1}(x)$, Math. Comp. **32** (1978), 571–576.
- [BH3] _____, The appearance of tens of billion of integers x with $\pi_{24,13}(x) < \pi_{24,1}(x)$ in the vicinity of 10^{12} , J. Reine Angew. Math. **299/300** (1978), 234-237.
- [BH4] _____, Numerical and graphical description of all axis crossing regions which occur before 10¹², Internat. J. Math. and Math. Sci. (1979), 111–119.
- [BH5] _____, A new bound for the smallest x with $\pi(x) > li(x)$, Math. Comp. **69** (2000), 1285–1296.
- [BFHR] C. Bays, K. Ford, R. H. Hudson, and M. Rubinstein, Zeros of Dirichlet L-functions near the real axis and Chebyshev's bias, J. Number Theory 87 (2001), 54–76.
- [E] H.M. Edwards,, Riemann's Zeta Function, Academic Press, N.Y., 1974.
- [H1] R. H. Hudson, A formula for the exact number of primes below a given bound in any arithmetic progression, Bull. Austral. Math. Soc. 16 (1977), 67–73.
- [H2] ______, A common combinatorial principle underlies Riemann's formula, the Chebyshev phenomenon, and other subtle effects in comparative prime number theory, I., J. Reine Angew. Math. 313 (1980), 133–150.
- [K1] J. Kaczorowski, A contribution to the Shanks-Rényi race problem, Quart. J. Math., Oxford Ser. (2) 449 (1993), 451–458.
- [K2] _____, Results on the distribution of primes, J. Reine Angew. Math. 446 (1994), 89–113.
- [K3] _____, On the Shanks-Rényi race problem, Acta Arith. 74 (1996), 31-46.
- [KT1] S. Knapowski and P. Turán, Comparative prime number theory I., Acta. Math. Sci. Hungar. 13 (1962), 299-314; II. 13 (1962), 315-342; III. 13 (1962), 343-364; IV. 14 (1963), 31-42; V. 14 (1963), 43-63; VI. 14 (1963), 65-78; VII. 14 (1963), 241-250; VIII. 14 (1963), 251-268.
- [KT2] S. Knapowski and P. Turán, Further developments in the comparative prime-number theory. I., Acta Arith. 9 (1964), 23-40; II. 10 (1964), 293-313; III.
 11 (1965), 115-127; IV. 11 (1965), 147-161; V. 11 (1965), 193-202; VI. 12 (1966), 85-96.
- [La] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 3rd ed., Chelsea, New York, 1953.
- [Lee] J. Leech, Note on the the distribution of prime numbers, J. London Math. Soc. **32** (1957), 56–58.
- [Leh] R. S. Lehman, On the difference $\pi(x) li(x)$, Acta Arith. 11 (1966), 397–410.
- [Li] J.E. Littlewood, Sur la distribution des nombres premiers, C. R. Acad. Sci. Paris 158 (1914), 1869–1872.
- [M] K. S. McCurley, Explicit Estimates for the error term in the Prime Number Theorem for Arithmetic Progressions, Math. Comp. 42 (1984), 265–285.
- [RR] O. Ramaré and R. Rumely, *Primes in arithmetic progressions*, Math. Comp. **65** (1996), 397–425.
- [Ri] H. Riesel, Prime Numbers and Computer Methods for Factorization, 2nd ed., Birkhauser, Boston, 1994.
- [RoS] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
- [RS] M. Rubinstein and P. Sarnak, Chebyshev's Bias, J. Exper. Math. 3 (1994), 173–197.

- [Ru1] R. Rumely, Numerical computations concerning the ERH, Math. Comp. **61** (1993), 415–440.
- [Ru2] _____, CD-ROM containing lists of zeros of Dirichlet L-functions.
- [tR] H.J.J. te Riele, On the sign difference $\pi(x) li(x)$, Math. Comp. 48 (1987), 323–328.
- [Sh] D. Shanks, Quadratic residues and the distribution of primes, Math. Comp. 13 (1959 272–284).
- [Sk1] S. Skewes, On the difference $\pi(x) li(x)$, J. London Math. Soc. 8 (1933), 277-283.
- [Sk2] $\underline{\hspace{1cm}}$, On the difference $\pi(x) li(x)$, Proc. London Math. Soc. (3) 5 (1955), 48-70.

Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208, USA

Current address: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208, USA

 $E ext{-}mail\ address: hudson@math.sc.edu}$