FROM KOLMOGOROV’S THEOREM ON EMPIRICAL DISTRIBUTION
TO NUMBER THEORY

KEVIN FORD

ABSTRACT. We describe some new estimates for the probability that an empirical distribu-
tion function stays on one side of a given line, and give applications to number theory.

1. INTRODUCTION

Let X1,..., X, be real-valued independent random variables, each with distribution func-
tion F'(u). Let

F.(u) = %#{z : X; <u}

be the corresponding empirical distribution function. For n, u fixed, F,(u) is a random
variable. Applying the strong law of large numbers to the Bernoulli variables

l1ix,<uy (=11if X, <u,0 otherwise),

we see that F},(u) — F(u) almost surely. In 1933, Glivenko [10] (and, slightly later, Cantelli
n—0o0
[2]) proved that the convergence is uniform on the real line : sup | Fy,(u) — F(u) |j> 0

almost surely. Immediately, in his seminal paper [13], Kolmogorov made a careful study of
the convergence of F,(u) to F(u) as n — oo : he showed that if F' is continuous, then for
each A > 0, the probability P(sup |F,,(u) — F(u)| < A/y/n) is independent of F, and that

o0

(1.1) P(sup |F,(u) — F(u)| < Mv/n) = > (=1)fe X (n — o)

k=—o00

uniformly in .

The three papers of Glivenko, Kolmogorov and Cantelli appeared (in this order) in the
same issue of the Giornale dell Istituto Italiano degli Attuari, all in Italian, and with almost
the same title. The paper [13] of Kolmogorov also appears in his Selected Works ([14],
p. 139-146; comments p. 574-583).

Six years later, Smirnov [21] studied the corresponding one-sided bounds, showing for
A > 0 that

(1.2) P(sup(F,(u) — F(u)) < M vn) = 1—e 2 (n— ).
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Together, (1.1) and (1.2) form the basis for the well-known Kolmogorov-Smirnov goodness-
of-fit tests.!

It is sometimes convenient to express probabilities of the above type in terms of the “order
statistics” of X1, ..., X,,, which is the increasing sequence &; < --- < &, obtained by ordering
each realization of the initial sequences X1, ..., X,.

From now on, we will consider uniform distribution on [0, 1], that is

0 <0
(1.3) Fluy=<u 0<u<1
1 uw>1.
In this case, &, ...,&, are called uniform order statistics. In this note, we are interested in

the behavior of

v

Qn(u,v):P(Vie{l,...,n}:giz i—u>'

In this notation, Smirnov’s theorem reads Q,(Ay/n,n) — 1 — =2’ 2
A generalization of Smirnov’s theorem was given by Csédki in 1974 (see [3], Theorem 2.1).
For each fixed pair («, ) of positive real numbers,

(1.4) Qn(av/n,n+ (B —a)yn) =1 — e 2P (n — 00).

Smirnov and others gave later refinements to (1.2) (e.g. [15]). All of these estimates require
that u > ¢y/n and u + v — n > cy/n for some fixed ¢ > 0. For more information about
such estimates, including connections with non-crossing probabilities for Brownian motion
and Brownian bridge processes, see [20]. For an application to number theory, we will need
estimates which are uniforminn > 1,0 < u < n,u+v > n and are particularly strong when
u and v + v — n are very small.

Let w = u + v — n. Trivially Q,(u,v) = 0 when w < 0 and Q,(u,v) = 1 when u > n
(recall that 0 < X; < 1 from the choice of F'). If u < 1 and w > 0, the exact formula

INotice that applying the Central Limit Theorem to the Bernoulli variables 1(x,<u}, We have only

Ao (u)
P(F(u) = F@| < AV = 5= [ e Pas,
27 J-x/o(u)
with o(u) = \/F(u)(1 — F(u)). In Kolmogorov’s theorem, |F,,(u) — F(u)| is replaced by its supremum over
u, and the limit in the right-hand side is a universal (independent of F') function, of which Kolmogorov gave
the first table of values.
2Notice that

0 uwe (—00,51)
Fa(u) =< £ wel&éin) 1<i<n-—1)
1 u € [&,,+00).

thus we see (with (1.3)) that

P(sup(Fy(u) — F(u)) < \/v) = P (mgw% —&) < wa) = Qu(WA,n).
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Qn(u,v) = %(1 + u/v)" ! was found by Daniels [4]. Estimating Q,(u,v) when u > 1 is

much more difficult, however there is an exact formula

Qi) =% 35 (M) w+n =gy -y

=1—U% > (?)(wm—j)”‘j‘l(j—u)ﬂl

u<j<n

(1.5)

The special case v = n of (1.5) is due to Smirnov [22], and the general case is due to Pyke
[18]. The equivalence of the two expressions for Q,(u, v) follows from one of Abel’s identities
([19], p. 18, (13a)). The first is more convenient when u is very small and fixed, while the
second is more convenient for larger u because all summands are positive.

2. NEW ESTIMATES FOR UNIFORM ORDER STATISTICS

Theorem 2.1. Uniformly in v > 0, w > 0 and n > 1, we have

Qulty0) = 1 — ¢ 2wl +o(“+“’),

n

i.e. \O(“’L—“’)| < const(”“L—“’) where the constant is independent of u, v, n.
n n

Two immediate corollaries are the asymptotics (1.2) and (1.4). In addition we have the
following useful approximation.

Corollary 2.1. Uniformly in v > 0, w > 0 and n > 1, we have

Qn(u,v):%Tw <1+0<%+%+%)).

. uw .
In particular, when — — 0, v — oo and w — 0o as n — oo, we see that Q,(u,v) is
n

) 2uw
asymptotic to —.

n

Both Smirnov [22] and Csaki [3] approximate the second sum in (1.5) via Stirling’s formula
for n!, while we use the complex analytic approach of Lauwerier [15] (see also [16]). Full
details appear in §11 of [9], and we only indicate the main ideas here. First,

B n! B (w+n—g)" 7t (j—u)
(2.1) Qn(u,v) =1 =T, T_ng;n ) T

Introduce the so-called Bruwier functions (see [17])

o) =wd By = B (< g0

k=0 ) k>u
The residue theorem then gives

(2.2) T = $Y(z) dz (r <1/e).
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The functions ¢ and ¢ may be analytically continued to S = C\(1/e,o0) by writing

(2.3) b(2) = eu9(2) L Z 1

0@ -1 e i () — 1)

where f(2), g(2) and g;(2) (j € Z, j # 0) are the branches of the inverse of ze™* as given in
[15].

We next expand the contour in (2.2) into a large circle plus two real line segments above
and below the branch cut of S. Letting the radius of the circle tend to oo, we obtain (since
there is no pole outside the circle of radius 1/e) :

(2.0 —o ([ -] )

where Dt and D~ are the branches of the real segment (1/e,00) lying above, respectively
below, the branch cut. The contribution to the integrals from the terms in the sum over j in
(2.3) is negligible (this requires some effort to prove, however). The bulk of the contribution
to the integrals from the remaining part comes from z near the singularity at 1/e. Writing
z=(1/e)(1 —re®/2) with r > 0 and |f] < 7, we have

flz) =1 —rt/2e972 4 grew + 0(r*?),
. 1 .
g(z) = 14+ 12072 4 grew + O(r%/?).

Here § = —7 corresponds to z € DT and 6 = 7 corresponds to z € D—. Next, let s > 0 and
suppose £(1+s?/2) € DT. Put

1
(1+5%/2)=1+is—=s°---

F(s) = ( :
(14 5%/2)) = F(-s).

G(s) = g(

(2.5)

DI | =

The power series for F'(s) and G(s) represent analytic functions for |s| < v/2 and G(s) = F(s)
for real s. By (2.4), for some small constant § > 0

ewtn-—u /ﬂ —is eW(F(s)—-1)~u(G(s)-1)

(2.6) == Gl =1 (1+s2/2)nH

ds + E,

E being a negligible error term.
The above integral is estimated using the saddle point method, which requires good
estimates for the location of the critical point v = 7(z,y) of the function

a(s) = a(s;2,y) = o(F(s) — 1) — y(G(s) — 1) — log(1 + 5°/2).
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which lies closest to the origin. Here x,y are complex numbers with |z| < ¢, |y| < ¢ for some
small ¢ > 0. Using (2.5) and the fact that f and g are inverses of ze %, we obtain

V(@,y) = (z +v) (T?%ti'?) :

a(y(z,y)) = —zy +y — x +1og(1 + z) + log(1 — y) + O(|z%y| + |xy?]),
a"(y(z,y)) = =1+ O(|z| + |y]).

Taking z = ;%5 and y = %7, we find that the integral in (2.6) is

(27) VT o Bh)) ermvomret=i) (14 )" (12 1),
n n3/? n n

Theorem 2.1 readily follows from (2.1), (2.6) and (2.7).

3. NUMBER THEORY APPLICATIONS

Hardy and Ramanujan initiated the study of the statistical distribution of the prime
factors of integers in their ground-breaking 1917 paper [12], and much work has been done
on this topic since then. Write an arbitrary integer n = pips - - - px, where the p; are primes
and p; < --- < p,. Roughly speaking, the quantities g; = loglogp;;1 — loglogp; behave
like independent exponentially distributed random variables. Of course the g; have discrete
distributions, but the distributions approach the exponential distribution as j — oco. It is
well-known that a typical integer n has about loglog b — loglog a prime factors in an interval
(a,b], and the probability that n has at least one prime factor in (a, b] is approximately®

loga + O(1)
1- 1-1/p)=1— 2277
<| <|b( /p) Togh
a<px

One can also consider integers with a fixed number of prime factors and examine the statistics

loglogp;i; — loglogp; _
(61,"',£m), é-z: 808P+ & g], m:k—l—]
loglog py, — log log p;

With £ and j fixed, the numbers &1, ..., &, behave much like uniform order statistics. This
means that for “nice” functions f : [0,1]™ — R, the average of f(&,...,&n) over n which
are the product of £ primes is about

m! / flz1,. . ) dzy - - - dTy,.

0<z1 <<z <1

The approximation gets better as 7 — oo.
These phenomena can be explained by considering the following “model” of the integers.
Let {X, : p prime} be independent Bernoulli random variables so that P(X, = 0) =1 — %

3p will always denote a prime number; [], <p<b will be a product on primes, > <p<p & SUM On primes.
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and P(X, =1) = %. Thus X, models the event that a random integer is divisible by p. By
an elementary estimate,

1
Z E(X,) = Z — = loglogb —logloga + O(1/loga).

a<p<b a<p<b

(The loglog, rather than log, are due to the fact that we sum only on primes.) For more about
probabilistic number theory, the reader may consult the excellent monographs of Elliott [5].

Questions about the distribution of all divisors of integers are much more difficult, since
the corresponding random variables { X, : d > 1} are not at all independent. Consider the
problem of estimating (v, z), the probability that a random integer has a divisor d satisfying
y < d < z. More precisely,

c(y.2) = lim #{n <z:3dn,y<d< z}
T—00 T

Similarly, let €,(y, z) be the probability that a random integer has exactly r divisors in the
interval (y, z]. Interest in bounding £(y, z) began in the 1930s with a paper by Besicovitch
[1], who proved that liminf, ,, e(y,2y) = 0. A year later, Erdés [6] improved this to
lim, o, €(y, 2y) = 0. Later work, especially by Erdés [7], [8], and Tenenbaum [23], focused
on determining the rate at which (y,2y) — 0 and on bounding (y, z) for more general
y,z. Chapter 2 of the book [11] contains a thorough exposition on such bounds and their
applications. The main theorem of [9] is a determination of the order of magnitude of &(y, 2)
for all y, z; that is, bounding £(y, z) between two constant multiples of a smooth function of
Yy, z. In particular, we show that for some positive constants c¢; and c,,

C1 Co
3.1 < 2y) <
3 (log ) (loglog ) = ) = (og y)iloglog g
where § = 1 — 28062 = 0.08607 ...
Concerning the behavior of £,.(y, z), Erdés conjectured in [8] that
2

lim S22 _

y—oo £(y, 2y)
The ratio er((y, Z)) can be considered as the conditional probability that a random integer

e(y, 2
contains exactly r divisors in (y, z] given that it has at least one such divisor. In [24] a
er (¥, 2y)

lower bound > c3f(y) was given, where f(y) — 0 very slowly as y — oco. Erdés

e(y,2y)

conjecture is disproved in [9], where the order of ¢,.(y, z) is determined for a wide range of
y, z. In particular, for any » > 1 and any constant ¢ > 1,

lim inf r8Y) o o)
y=oo £(y,cy)

Also,
& (y, 2)
e(y, 2)
confirming a conjecture of Tenenbaum [24].

— 0 (z/y — o0),
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We now say a few words about the proofs. Let m be the product of the distinct prime
factors of n which are < y. First, ¢(y, 2y) can be estimated in terms of

Z @, L(m) = p{u : Id|m,e"* < d < 2¢"},

where p denotes Lebesgue measure. The quantity L(m) is a kind of measure of the global
distribution of the divisors of m. If m = p; - - - pg, then

< min 2kh o).
L(m) < OISIl}llng log(2p1 - - - pp)
Most of the time, we expect log(2p; - - -pp) = O(logpr), so

— k in (—
L(m)=0 (2 eXp{1I§nhl£k( hlog2 + loglogph)}> .

log log p;

Putting & = w, then &;,...,& behave much like uniform order statistics. Thus,
oglogy

upper bounds for averages of L(m) depend on the size of Q(u,v) with v = bﬁ}%. Utilizing

Theorem 2.1 leads to the upper bound in (3.1). Furthermore, the bulk of the contribution
loglogy
—— 1
log 2 +0()
loglogy
log 2
n have about loglogy prime factors < y.

comes from numbers n with £k = . This implies that most integers which

have a divisor in (y, 2y] have about prime factors < y. By contrast, most integers
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