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1. Introduction

A covering of the integers is a system of congruences x � aj (mod mj), where aj and

mj denote integers with mj > 0 for each j, such that every integer satis�es at least one

of the congruences. An open problem (which surfaced over 40 years ago) is to determine

whether a covering of the integers exists for which the indices j range over a �nite set

and the mj are distinct odd integers > 1. The problem of whether an \odd covering"

of the integers, as we will call it, exists led Erd}os and Selfridge to o�er money to entice

its solution while essentially betting on the outcome of the answer. Erd}os, convinced

that an odd covering does exist, o�ered $25 for a proof that no odd covering exists;

Selfridge, convinced (at that point) that no odd covering exists, o�ered $300 for the �rst

explicit example of an odd covering. No award was promised to someone who gave a

non-constructive proof that an odd covering of the integers exists. Over the years, the

prize money has varied (cf. [1, p. 251]). Selfridge (private communication) has informed

us that he is now increasing his award to $2000.

This paper was motivated largely by related work of Schinzel [3] associated with

irreducible polynomials. Throughout this paper, unless speci�ed otherwise, reducibility

and irreducibility shall be in the ring Z[x] (in particular, 1 and �1 are neither reducible

nor irreducible). It is well known (based on an appropriate covering argument) that

there are in�nitely many (even a positive proportion) of positive integers k such that

k � 2n + 1 is composite for all positive integers n (cf. [1, p. 77]). An analogous problem

is to determine whether there exists an f(x) 2 Z[x] such that f(x)xn+1 is reducible for

all positive integers n. To make the problem non-trivial, one should add the condition

that f(1) 6= �1. A consequence of Schinzel's result in [3] is that if there is a polynomial

f(x) 2 Z[x] for which f(1) 6= �1 and for which f(x)xn + 1 is reducible over the integers

for every positive integer n, then there must exist an odd covering of the integers. In

fact, Schinzel established that the existence of such an f(x) is equivalent to an explicitly

described covering which is more restrictive than an odd covering. The argument he gives

is based largely on obtaining speci�c knowledge about the factorization of f(x)xn + 1

when n is suÆciently large. For the connection between the factorization of f(x)xn + 1
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and the odd covering problem, the reader should consult Schinzel's original argument [3].

In this paper, we concern ourselves with an alternative approach to establishing in-

formation about the factorization of f(x)xn + 1 (information suÆcient to carry out the

connection with the odd covering problem as in [3]). Our approach is to associate the

reducibility of the non-reciprocal part (de�ned below) of lacunary polynomials with an

elementary problem of independent interest concerning the distribution of integers in

residue classes. As a consequence, we are able to obtain new information about the

factorization of lacunary polynomials. In particular, we address the factorization of

f(x)xn+g(x) where f(x) and g(x) are relatively prime polynomials in Z[x] with f(0) 6= 0

and g(0) 6= 0.

To help with the statements of our main results, we discuss notation here. The

expression a mod k will denote the unique integer b in [0; k) for which a � b (mod k).

If u is a real number, [u] will denote the greatest integer � u and kuk will represent

the minimal distance from u to an integer. We will use fug to denote u � [u] unless

it is clear from the context that fug refers to a set consisting of the single element

u. For a polynomial F (x) =
Pr

j=0 ajx
dj , we de�ne kFk =

qPr
j=0 a

2
j . Also, eF (x) =

xdegFF (1=x) and is called the reciprocal of F (x). If F (x) = � eF (x), then F (x) is said to

be reciprocal. The non-reciprocal part of F (x) is the quotient of F (x) with the product

of all of its irreducible reciprocal factors in Z[x] that have positive leading coeÆcient

to the multiplicity they occur as a factor of F (x). To clarify, if g(x) is such a factor,

then the content of g(x) (the gcd of its coeÆcients) is 1 (since it is irreducible in Z[x]).

Also, since �g(x) will be a factor whenever g(x) is, we have factored out only g(x) with

positive leading coeÆcients to make the non-reciprocal part well-de�ned.

Our �rst result is

Theorem 1. Let F (x) =
Pr

j=0 ajx
dj 2 Z[x], where 0 = d0 < d1 < � � � < dr and

a0a1 � � �ar 6= 0. Let k0 be a real number � 2, and suppose that

degF � max

�
2N+9�2N�1

+ 29�2
N�2

; k0 � 29�2
N�2

�
where N = 2 kFk2 + 2r � 5:

If the non-reciprocal part of F (x) is reducible in Z[x], then there is a positive integer

k 2 [k0; degF ] such that the polynomial G(x; y) =
Pr

j=0
ajx

djy`j is reducible in Z[x; y],

where dj and `j are de�ned by

dj = dj mod k and dj = k`j + dj :

Note that the converse of the above comes close to holding. If G(x; y) is reducible, then

one can obtain a factorization of F (x) by simply taking y = xk. But F (x) having even

a non-trivial factorization does not imply its non-reciprocal part is reducible.

Our second result is a modi�cation of the above theorem. We introduce an extra

power of x factor into the statement of the theorem which enables us to decrease the

double exponential bound on the size of degF . The extra power of x is transparent in

the statement of the result when one takes y = xk.
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Theorem 2. Let F (x) =
Pr

j=0 ajx
dj 2 Z[x], where 0 = d0 < d1 < � � � < dr and

a0a1 � � �ar 6= 0. Let k0 be a real number � 2, and suppose that

degF � max

�
2� 52N�1; k0

�
5N�1 +

1

4

��
where N = 2 kFk2 + 2r � 5:

If the non-reciprocal part of F (x) is reducible in Z[x], then there is an integer k 2
[k0; 4(degF )=3) satisfying:

(i) For each j 2 f0; 1; : : : ; rg, the number dj mod k is in [0; k=4) [ (3k=4; k).

(ii) If dj and `j are de�ned by

dj = (dj + [k=4]) mod k and dj + [k=4] = k`j + dj

and G(x; y) =
Pr

j=0 ajx
djy`j , then x�mG(x; y) is reducible in Z[x; y], where m

is a non-negative integer chosen as large as possible with the constraint that

x�mG(x; y) 2 Z[x; y].

The condition k 2 [k0; 4(degF )=3) in Theorem 2 is suÆcient to imply that degF +

[k=4] � k. It follows that at least one of the exponents `j on y in the polynomial G(x; y)

is positive. Thus, x�mG(x; y) being reducible does not follow immediately from F (x)

being reducible.

As a consequence of Theorem 2, we obtain the following

Corollary. Let f(x) and g(x) be in Z[x]with f(0) 6= 0, g(0) 6= 0, and gcd
Z
(f(x); g(x)) =

1. Let r1 and r2 denote the number of non-zero terms in f(x) and g(x), respectively. If

n � max

�
2� 52N�1; 2max

�
deg f; deg g

	�
5N�1 +

1

4

��

where

N = 2 kfk2 + 2 kgk2 + 2r1 + 2r2 � 7;

then the non-reciprocal part of f(x)xn+ g(x) is irreducible or identically 1 or �1 unless

one of the following holds:

(i) The polynomial �f(x)g(x) is a pth power for some prime p dividing n.

(ii) For either " = 1 or " = �1, one of "f(x) and "g(x) is a 4th power, the other is

4 times a 4th power, and n is divisible by 4.

In the case that f(x) = 1 (or, equivalently, g(x) = 1), the Corollary, without an explicitly

stated bound on n, is due to Schinzel [2(Theorem 5), 3(Lemma 4)].

Observe that if (i) or (ii) of the Corollary holds, the polynomial f(x)xn + g(x) is

reducible by an apparent factorization. This factorization shows that the non-reciprocal

part of f(x)xn + g(x) is reducible as well except possibly in the case that f(x) = �~g(x).
However, in this case, f(x)xn + g(x) is itself reciprocal. Since it is impossible for a

reciprocal polynomial to have exactly one non-reciprocal irreducible factor, we deduce

that, in this case, the non-reciprocal part of f(x)xn + g(x) cannot be irreducible. Thus,

if (i) or (ii) holds, the non-reciprocal part of f(x)xn + g(x) is not irreducible.
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2. A Preliminary Problem on the Distribution of Residues

Suppose that a1; a2; : : : ; ar are distinct non-negative integers written in increasing

order and that we wish to determine an integer k � 2 such that aj mod k < k=2 for

each j 2 f1; 2; : : : ; rg. The value k = 2ar + 1 satis�es this property. Examples of sets

S = fa1; : : : ; arg for which this choice of k � 2 is minimal are given by f3; 5g and

f50; 68; 125g. We begin this section by showing that for each r, there exists an A(r)

such that if ar � A(r), then there is a k 2 [2; ar] satisfying aj mod k < k=2 for every

j 2 f1; 2; : : : ; rg (take k0 = 2 in Lemma 2 below). At the same time we pursue �nding an

estimate for A(r). This problem will play a crucial role in the proof of Theorem 1, the

estimate for A(r) producing the bound on degF given there. For the proof of Theorem

2, we then consider the analogous problem in which the condition aj mod k < k=2 is

replaced by aj � dj (mod k) for some dj 2 (�k=4; k=4). We note that the techniques

in this section can easily be extended to deal with similar problems in which the aj are

restricted to a smaller selection of residues modulo k.

Lemma 1. Let � 2 (0; 1=2], and let r be an integer � 2. Set

Br = Br(�) =
�3

4

�
16

�5

�2r�2

:

If x1; x2; : : : ; xr are numbers in [0; 1] with 1 = x1 > x2 > � � � > xr, then there exists a

real number b 2 [1; Br] such that fbxjg < � for each j 2 f1; 2; : : : ; rg.

Proof. De�ne X1 = 1, X2 = �, and

Xj =
4

�2

�
�5

16

�2j�3

for j � 3:

If x2 < X2, then the lemma holds with b = 1. Now, we consider the case that x2 � X2.

Take the maximal t (necessarily � 2) satisfying xj � Xj for j 2 f1; 2; : : : ; tg. Thus, if

t+ 1 � j � r, then

(1) xj � xt+1 < Xt+1:

By Dirichlet's box principle, there exists a positive integer ` satisfying jj`xjjj < xj�=2

for each j 2 f2; 3; : : : ; tg. Furthermore, we may take

` �
tY

j=2

2

Xj�
=

2

�2

��
2

�t�2 � 16

�5

�2t�2�1

�
�3

8

�
16

�5

�2t�2

=
Bt

2
:

The number b = `+ �=2 < Bt satis�es the inequalities fbx1g = �=2 < �, and fbxjg <
xj� < � for every j 2 f2; 3; : : : ; tg. Finally, for j > t, we have by (1) that

bxj < Btxj < BtXt+1 = �:

This completes the proof of the lemma. �
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Lemma 2. Let r be a positive integer, and let k0 be a real number � 2. Set

A(r) = max

�
29�2

r�1

2r + 29�2
r�2

; k02
9�2r�2

�
:

Let a1; a2; : : : ; ar be non-negative integers satisfying a1 < a2 < � � � < ar and ar �
A(r). Then there exists an integer k 2 [k0; ar] such that aj mod k < k=2 for each

j 2 f1; 2; : : : ; rg.

Proof. If r = 1, the result holds trivially by considering k = ar. If r = 2, the result can

be established by considering the cases k = a2 (if a1 < a2=2), k = [a2=2] (if a2=2 � a1 �
3(a2 � 2)=4), and k = a1 (if 3(a2 � 2)=4 < a1 < a2).

We deal now only with r � 3. For � 2 (0; 1=2), we de�ne

Cr(�) = max

(
Br(�)

2

1
2
� �

+Br(�); k0Br(�)

)
;

where Br(�) is as de�ned in Lemma 1. For an appropriate choice of �, we show that

Cr(�) � A(r). We also show that, for any � 2 (0; 1=2), the lemma holds even with the

condition ar � A(r) replaced by ar � Cr(�). The lemma will then follow.

Consider

� = 2�1�2
2�r

:

Then

Br = Br(�) �
1

32

�
16

�5

�2r�2

= 29�2
r�2

:

Note that �
1�

1

n

�n
>

�
1�

1

n

�
1

e
>

1

4
for n � 4:

Taking n = 2r�1, we deduce (1=2)� � > 2�r from the implications�
1�

1

2r�1

�2
r�1

>
1

4
=) 1�

1

2r�1
> 2�2

2�r

=)
1

2
�

1

2r
> � =)

1

2
� � > 2�r:

The inequality

Cr(�) � max

�
29�2

r�1

2r + 29�2
r�2

; k02
9�2r�2

�
= A(r)

follows easily.

Now, suppose the conditions of the lemma hold with ar � Cr(�) instead of ar � A(r)

(and � 2 (0; 1=2) arbitrary). Let xj = ar+1�j=ar for each j 2 f1; 2; : : : ; rg, and consider

b 2 [1; Br] as in Lemma 1. Let � = ar=b and k = [�]. Observe that ar � Cr(�) and

b 2 [1; Br] imply that k0 � � � ar so that k 2 [k0; ar]. For each j 2 f1; 2; : : : ; rg we have
faj=�g = fbxr+1�jg < � so that

faj=kg � faj=�g+
�aj
k
�
aj

�

�
< �+

�
ar

(ar=Br)� 1
�

ar

ar=Br

�
= �+

B2
r

ar � Br

�
1

2
:

It follows that aj mod k < k=2 for each j 2 f1; 2; : : : ; rg as required. �
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Lemma 3. Let r be a positive integer, and let k0 be a real number � 2. Set

A0(r) = max

�
2� 52r�1; k0

�
5r�1 +

1

4

��
:

Let a1; a2; : : : ; ar be non-negative integers satisfying a1 < a2 < � � � < ar and ar � A0(r).

Then there exists an integer k 2 [k0; 4ar=3) such that aj mod k is in [0; k=4) [ (3k=4; k)

for each j 2 f1; 2; : : : ; rg.

Proof. We will establish that if D is a positive integer with 1 � D �
p
ar=(5

r�1
p
10),

then one may take

(2) k 2

�
ar

5r�1D + (1=4)
;

ar

D � (1=4)

�
:

In particular, taking D = 1 will give k 2 [k0; 4ar=3) as in the statement of the lemma.

Let xj = aj=ar for j 2 f1; 2; : : : ; rg. We want to show that there is an integer k

satisfying (2) and integers c1; c2; : : : ; cr such that

(3) jaj � cjkj <
k

4
for 1 � j � r:

By the Dirichlet box principle, there is an integer d satisfying D � d � 5r�1D, Djd, and

(4) kdxjk �
1

5
for 1 � j � r � 1:

Clearly, (4) holds with j = r as well. Observe that the upper bound on D above implies

that d �
p
ar=10. For 1 � j � r, let cj denote the nearest integer to dxj .

For the moment, suppose cj 6= 0 (so that cj � 1) for each j 2 f1; 2; : : : ; rg. Then (3)

follows provided
k

ar
2

\
1�j�r

�
xj

cj + (1=4)
;

xj

cj � (1=4)

�
:

For each j 2 f1; 2; : : : ; rg, since cj � d, we deduce from (4) that

d+ (1=5)

d+ (1=4)
�

cj + (1=5)

cj + (1=4)
�

dxj

cj + (1=4)
and

d� (1=5)

d� (1=4)
�

cj � (1=5)

cj � (1=4)
�

dxj

cj � (1=4)
:

Hence, (3) holds provided

(5)
k

ar
2

�
d+ (1=5)

d(d+ (1=4))
;

d� (1=5)

d(d� (1=4))

�
:

The length of the interval on the right is

1

10(d2 � 1
16
)
>

1

10d2
�

1

ar
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so that k exists satisfying (5). Observe that (5) and the de�nition of d imply (2) holds.

Now, suppose some cj = 0 with j 2 f1; 2; : : : ; rg. We again choose k so that (5) holds.

For each cj 6= 0, the above argument gives jaj � cjkj < k=4 as in (3). On the other hand,

if cj = 0, then (4) and the de�nitions of cj , xj , and k imply

5daj � ar < k
d
�
d+ 1

4

�
�
d+ 1

5

� �
5dk

4
:

Hence, (3) holds for such cj as well, completing the proof of the lemma. �

It is of some interest to know whether the bounds given for A(r) and A0(r) are close

to their actual values. In particular, does A(r) have double exponential growth and does

A0(r) have exponential growth? We end this section with two examples which show that

this is indeed the case.

Example 1: We describe a choice of fa1; a2; : : : ; arg which shows that the growth of

A(r) is doubly exponential. Let s be a positive integer, and de�ne x1 = 1, x2 = 1=2, and

x2j+2 =
x22j

2
and x2j+1 = x2j � x2j+2 for j 2 f1; 2; : : : ; s� 1g:

Equivalently, x1 = 1 and

x2j =
1

22
j�1

for j 2 f1; 2; : : : ; sg and x2j+1 =
22

j

� 1

22
j+1�1

for j 2 f1; 2; : : : ; s� 1g:

Let b be a real number in
�
1; 22

s�1
�
. We will show that the inequalities

(6) fbxjg <
1

2
for j 2 f1; 2; : : : ; 2sg

cannot all hold. Once this is established, one can take r = 2s and aj = 22
s�1xr+1�j =

xr+1�j=xr for j 2 f1; 2; : : : ; rg to obtain positive integers a1; a2; : : : ; ar with ar = 22
r=2�1

and max1�j�rfaj mod kg � k=2 for each integer k 2 [2; ar] (for such k, consider b =

1=(kxr) in (6)).

Assume that (6) holds. We claim that fbx2jg < x2j=2 for j 2 f1; 2; : : : ; sg. We

prove this by induction on j. Since fbx2g < 1=2, we have f2bx2g = 2fbx2g, or fbx2g =
f2bx2g=2. But f2bx2g=2 = fbx1g=2 < 1=4. We obtain fbx2g < 1=4 = x2=2. We suppose

now that fbx2jg < x2j=2 for some j � s� 1 and establish that fbx2j+2g < x2j+2=2. Set

n = 22
j

so that

(7) n =
2

x2j
=

x2j

x2j+2

:

The induction hypothesis and (7) imply fbx2jg < x2j=2 = 1=n. The relationships x2j+1+

x2j+2 = x2j , fbx2j+1g < 1=2, and fbx2j+2g < 1=2 imply fbx2jg = fbx2j+1g+ fbx2j+2g.
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Therefore, fbx2j+2g � fbx2jg < 1=n, and we have fnbx2j+2g = nfbx2j+2g or, by (7),

fbx2jg = nfbx2j+2g. We deduce that fbx2j+2g = fbx2jg=n < 1=n2 = x2j+2=2. Thus,

by induction, fbx2jg < x2j=2 for j 2 f1; 2; : : : ; sg. Now, we take j = s to obtain

fbx2sg < x2s=2. Since b � 1, we obtain bx2s � 1. Hence, b � 1=x2s = 22
s�1, a

contradiction. Thus, (6) does not hold.

Example 2: For r be a positive integer and j 2 f1; 2; : : : ; rg, de�ne aj = 3j�1. We show

that for each k 2 [2; 4ar], at least one of the r numbers aj mod k is not in [0; k=4) [
(3k=4; k). Each k 2 [2; 4ar] belongs to at least one interval [4 � 3j�2; 4 � 3j�1] with

j 2 f1; 2; : : : ; rg. On the other hand, if k 2 [4� 3j�2; 4� 3j�1] for some j, then

k

4
� 3j�1 = aj �

3k

4
:

The desired conclusion follows.

3. Proofs of the Main Results

Proof of Theorem 1. We consider the non-reciprocal part of F (x) to be reducible. We

begin the proof by constructing non-reciprocal polynomials u(x) and v(x) in Z[x] such

that F (x) = u(x)v(x). Let g(x) be an irreducible non-reciprocal factor of F (x). Either

~g(x) is also a factor of F (x) or it is not. If it is, then take u(x) and v(x) so that ~g(x) - u(x)

and g(x) - v(x). Observe that if � is a root of g(x), then it will be a root of u(x) but 1=�

will not; this implies u(x) is not reciprocal. Similarly, v(x) is not reciprocal. If ~g(x) is

not a factor of F (x), then there is some irreducible non-reciprocal h(x) 6= ~g(x) such that

g(x)h(x) divides F (x). If ~h(x) also divides F (x), then we take u(x) and v(x) so that
~h(x) - u(x) and h(x) - v(x) and get (analogous to before) that u(x) and v(x) are non-

reciprocal. So we are left with the possibility that both ~g(x) and ~h(x) do not divide F (x).

Take u(x) and v(x) so that g(x)ju(x) and h(x)jv(x). Since g(�) = 0 implies u(�) = 0 and

u(1=�) 6= 0 (which follows from the fact that the irreducible polynomial having 1=� as a

root, namely ~g(x), is not a factor of F (x)), we deduce u(x) is non-reciprocal. Similarly,

v(x) is non-reciprocal.

De�ne

W (x) = u(x)~v(x):

Since u(x) and v(x) are non-reciprocal, we easily see that the polynomials F (x), eF (x),
W (x), and fW (x) are distinct polynomials of degree dr with any two having greatest

common divisor of degree < dr. Observe that

(8) F (x) eF (x) = u(x)v(x)~u(x)~v(x) =W (x)fW (x):

Note that the coeÆcient of xdr on the left side of (8) is kFk2 and the coeÆcient of xdr

on the right side of (8) is kWk2. Hence, kWk2 = kFk2. We write W (x) in the form

W (x) =
Ps

j=0
bjx

ej where the bj are non-zero and 0 = e0 < e1 < � � � < es = dr. Then

kWk2 = kFk2 implies s � kFk2 � 1. Consider the set

T = fd1; d2; : : : ; drg [ fdr � d1; dr � d2; : : : ; dr � dr�1g

[ fe1; e2; : : : ; es�1g [ fes � e1; es � e2; : : : ; es � es�1g:
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Observe that jT j � 2 kFk2 + 2r � 5. We use the lower bound on dr = degF in the

statement of the theorem together with Lemma 2 to deduce that there is an integer

k 2 [k0; dr] such that t mod k < k=2 for every t 2 T . Fix such an integer k.

De�ne dj and `j as in the theorem, and de�ne ej and mj similarly by ej = ej mod k

and ej = kmj+ej (for 0 � j � s). De�ne d
0

j , `
0
j (for 0 � j � r) and e0j ,m

0
j (for 0 � j � s)

by d
0

j = dr � dj mod k, dr � dj = k`0j + d
0

j , e
0
j = es � ej mod k, and es � ej = km0

j + e0j .

De�ne G1(x; y) = G(x; y) (as in the statement of the theorem),

G2(x; y) =

rX
j=0

ajx
d
0

jy`
0

j ; H1(x; y) =

sX
j=0

bjx
ejymj ; and H2(x; y) =

sX
j=0

bjx
e0jym

0

j :

Observe that the de�nition of k implies that the exponent in each power of x appearing in

these expressions for Gj(x; y) and Hj(x; y) is < k=2. Also, G1(x; x
k) = F (x), G2(x; x

k) =eF (x), H1(x; x
k) =W (x), and H2(x; x

k) = fW (x). In particular, we deduce that G1(x; y),

G2(x; y), H1(x; y), and H2(x; y) are distinct with each one not dividing the others.

Corresponding to (8), we establish next that

(9) G1(x; y)G2(x; y) = H1(x; y)H2(x; y):

Expanding the product on the left-hand side of (9) we obtain an expression of the formPJ
j=0 gj(x)y

j where possibly some gj(x) are 0 but, in any case, deg gj < k for each j.

Since

F (x) eF (x) = G1(x; x
k)G2(x; x

k) =

JX
j=0

gj(x)x
kj;

we deduce that the terms in gj(x)x
kj correspond precisely to the terms in the expansion

of F (x) eF (x) having degrees in the interval [kj; k(j + 1)). Furthermore, J is determined

by the degree of F (x) eF (x) (namely, J = [2dr=k]). Similarly, writing the right-hand side

of (9) in the form
PJ 0

j=0 hj(x)y
j, we get deg hj < k for each j and the terms in hj(x)x

kj

correspond to the terms in the expansion of W (x)fW (x) having degrees in the interval

[kj; k(j+1)). Also, J 0 is determined by the degree of W (x)fW (x) (so that J 0 = [2dr=k]).

We see now that (9) is a consequence of (8).

Since G1(x; y), G2(x; y), H1(x; y), and H2(x; y) are distinct (with no one dividing

another), we deduce by unique factorization and (9) that each of the polynomialsG1(x; y),

G2(x; y), H1(x; y), and H2(x; y) is reducible. Since G(x; y) = G1(x; y), the theorem is

established. �

Proof of Theorem 2. We proceed as in the proof of Theorem 1. We choose the set

T in precisely the same manner. The integer k is chosen using Lemma 3. De�ning

G(x; y) as in the statement of Theorem 2, we obtain G(x; xk) = x[k=4]F (x). We de�ne

G1(x; y) = G(x; y) and the polynomials G2(x; y), H1(x; y), and H2(x; y) in an analogous

manner to the de�nition of G(x; y) so that we have

(10) G2(x; x
k) = x[k=4] eF (x); H1(x; x

k) = x[k=4]W (x); and H2(x; x
k) = x[k=4]fW (x):

9



Writing G1(x; y)G2(x; y) =
PJ

j=0 gj(x)y
j, we deduce here that the terms in gj(x) corre-

spond precisely to the terms in the expansion of x2[k=4]F (x) eF (x) having degrees in the

interval [kj; k(j + 1)). A similar conclusion holds for the terms in H1(x; y)H2(x; y), and

we obtain (9) as before. From (10), given any two of G1(x; y), G2(x; y), H1(x; y), and

H2(x; y), either one will have a factor di�erent from x that does not divide the other.

The theorem follows. �

Proof of Corollary. We use Theorem 2 with F (x) =
Pr

j=0 ajx
dj = f(x)xn + g(x) and

k0 = 2maxfdeg f; deg gg. For such F (x), there is a non-negative integer � such that

g(x) =
P�

j=0 ajx
dj and f(x) =

Pr
j=�+1 ajx

dj�n. Since k � 2d�, we have dj + [k=4] < k

for j 2 f0; 1; : : : ; �g. Hence, each of `1; `2; : : : ; `� is 0. We claim that the numbers

`�+1; `�+2; : : : ; `r are all equal. Assume `s 6= `t with �+ 1 � s < t � r. The ordering on

the dj and the de�nition of the `j in (ii) of Theorem 2 imply `t > `s. By (i) of Theorem

2 and the de�nition of dj , each dj is in [0; k=2). Hence, by the de�nition of the `j in (ii)

of Theorem 2, we obtain

dt � ds = k(`t � `s) + (dt � ds) > k �
k

2
=

k

2
� deg f:

This contradicts that f(x) =
Pr

j=�+1 ajx
dj�n. Hence, `�+1; `�+2; : : : ; `r are all equal. It

follows that the polynomial x�mG(x; y) in Theorem 2 can be written as x�mG(x; y) =

f(x)xdy` + g(x)xd
0

for some positive integer ` (see the comment after the statement of

Theorem 2) and some non-negative integers d and d0 (with at least one being 0). Theorem

2 implies that the non-reciprocal part of F (x) is reducible only if x�mG(x; y) is reducible.

A straightforward application of Capelli's theorem (cf. [4, p. 91]) implies that if (i) and

(ii) of the Corollary do not hold, then x�mG(x; y) is not reducible. It follows that if

(i) and (ii) of the Corollary do not hold, then the non-reciprocal part of F (x) is either

irreducible or �1. This completes the proof. �
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