A problem. Estimate \(S(A, \theta) \) when \(pg(p) \) is not bounded on average, e.g. \(g(p) \approx \frac{1}{2} \).

1. Exponential sum version

Let \(e(z) = e^{2\pi i z} \), note \(e(z) = e(-z) \). Let \(a_{n+1}, \ldots, a_{n+N} \in \mathbb{C} \) and consider the exponential sum

\[
S(x) = \sum_{n=M+1}^{M+N} a_n e(nx).
\]

It is easy to find the average of \(|S(x)|^2 \) on the unit interval:

\[
\int_0^1 |S(x)|^2 dx = \int_0^1 S(x) \overline{S(x)} dx
\]

\[
= \int_0^1 \left(\sum_n a_n e(nx) \right) \left(\sum_n \overline{a_n} e(-nx) \right) dx
\]

\[
= \sum_{n,n'} a_n \overline{a_{n'}} \int_0^1 e((n-n')x) dx
\]

\[
= \sum_n |a_n|^2.
\]

(This is Parseval's identity). We derive a kind of discrete analog.

Define \(\|x\| = \min \{ |x-n| : n \in \mathbb{Z} \} \), note \(0 \leq \|x\| \leq \frac{1}{2} \) for \(x \in \mathbb{R} \). We call a finite set \(\{ x_1, x_2, \ldots, x_r \} \) \(\delta \)-spaced if \(\|x_i - x_j\| \geq \delta \) when \(i \neq j \). Equivalently, the points \(e(x_i) \) have arguments differing by \(\geq 2\pi \delta \).

Theorem 6.1 If \(\{ x_1, \ldots, x_r \} \) is \(\delta \)-spaced and \(S(x) \) is defined by (6.1), then

\[
\sum_{i=1}^r |S(x_i)|^2 \leq C \left(N + \frac{1}{\delta} \right) \sum_{n=M+1}^{M+N} |a_n|^2.
\]

Here \(C \) is an absolute constant.
Remarks.
(i) We prove it with $C = 2\pi$. It has been proven with $C = 1$ due to Montgomery-Vaughan and independently by Selberg.

(ii) Always $S = \frac{1}{r}$. If $d = \frac{1}{r}$, then x_1, x_2, \ldots, x_r are equally spaced around the unit circle, and so $\delta \sum_{i=1}^{r} |S(x_i)|^2$ is a Riemann sum for $\int_{0}^{1} |S(x)|^2 dx$.

Thus, as $r \to \infty$, $\delta \sum_{i=1}^{r} |S(x_i)|^2 \to \sum_{n=\pm 1}^{\infty} \lambda_n |x_n|^2$, i.e. the term $\frac{1}{r}$ cannot be removed.

Also, if $r \geq 1$, $\lambda_n = 1 \forall n$ and $x_i = 0$, then

$|S(x_i)|^2 = N^2 = N \sum_{n=\pm 1}^{\infty} |a_n|^2$, so the term N cannot be removed.

In other words, (6.2) is best possible with $C = 1$.

(iii) Assume $|a_n| = 1$. The theorem says that on average over i,

$|S(x_i)| \ll \left(\frac{1}{r} (N + \frac{1}{r}) N \right)^{\frac{1}{2}} \ll \frac{N}{\sqrt{r}}$ if $\delta \gg \frac{1}{N}$.

In particular, this holds for at least one i. This is a savings of $1/r$ over the trivial bound $|S(x_i)| \leq N$.

(iv) The parameter M is irrelevant and WLOG may be taken to be zero.

We have

$|S(x)| = \left| \sum_{n=M+1}^{N} a_n e(nx) \right| = |S^*(x)| = \left| \sum_{n=1}^{N} a_{nm} e(nx) \right|$, where $S^*(x) = e(-Mx) S(x)$.

Proof idea

For a continuous function $f : \mathbb{R} \to \mathbb{C}$, $f(x) \approx \frac{1}{2\pi} \int_{x-\varepsilon}^{x+\varepsilon} f(u) du$ if ε small.

The error depends on the size of $f'(u)$ for u close to x.

We will approximate $|S(x)|^2$ by $\int_{x-\frac{\delta}{2}}^{x+\frac{\delta}{2}} |S(u)|^2 du$ using the following lemma.

Lemma 6.1 (Gallagher, 1967)

If $f : \mathbb{R} \to \mathbb{C}$ has continuous derivative on $[x-\frac{\delta}{2}, x+\frac{\delta}{2}]$, then

$|f(x)| \leq \frac{1}{\delta} \int_{x-\frac{\delta}{2}}^{x+\frac{\delta}{2}} |f(y)| dy + \frac{1}{2} \int_{x-\frac{\delta}{2}}^{x+\frac{\delta}{2}} |f'(y)| dy$.
Proof. WLOG $x = 0$. Using integration by parts,

\[
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi}{2} - y \right) f'(y) \, dy = -\frac{\pi}{2} f(0) + \int_{0}^{\frac{\pi}{2}} f(y) \, dy
\]

and

\[
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi}{2} + y \right) f'(y) \, dy = \frac{\pi}{2} f(0) - \int_{-\frac{\pi}{2}}^{0} f(y) \, dy.
\]

Subtracting the two equations gives

\[
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f'(y) \, dy = \frac{\pi}{2} f(0) + \int_{-\frac{\pi}{2}}^{0} f(y) \, dy + \frac{\pi}{2} f(0) - \int_{0}^{\frac{\pi}{2}} f(y) \, dy.
\]

Hence

\[
|f(0)| \leq \frac{\pi}{2} \int_{-\frac{\pi}{2}}^{0} f(y) \, dy + \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} |f'(y)| \, dy.
\]

Proof of Theorem 6.1

WLOG $M = 0$. Apply Lemma 6.1 with $f(x) = S^2(x)$ at each $x = x_i$ to get

\[
|S(x_i)|^2 \leq \frac{1}{\delta} \int_{I_i} |S(y)|^2 \, dy + \frac{1}{\delta} \int_{I_i} 2S(y)S'(y) \, dy, \quad I_i = [x_i - \frac{\delta}{2}, x_i + \frac{\delta}{2}].
\]

Since the x_i are δ-spaced, the I_i are non-overlapping modulo 1 and their union, modulo 1, is contained in $[0,1]$ ($S(x)$ is periodic with period 1).

Therefore,

\[
\sum_{i=1}^{N} |S(x_i)|^2 \leq \frac{1}{\delta} \int_{0}^{1} |S(y)|^2 \, dy + \int_{0}^{1} |S(y)S'(y)| \, dy.
\]

By Parseval's identity,

\[
\int_{0}^{1} |S(y)|^2 \, dy = \sum_{n=1}^{N} |\alpha_n|^2.
\]

Also, noting $S'(y) = \sum_{n=1}^{N} 2\pi i n \alpha_n e(nx)$ and using Cauchy–Schwarz inequality,

\[
\int_{0}^{1} |S(y)S'(y)| \, dy \leq \left(\int_{0}^{1} |S(y)|^2 \, dy \right)^{1/2} \left(\int_{0}^{1} |S'(y)|^2 \, dy \right)^{1/2}
\]

\[
= \left(\sum_{n=1}^{N} |\alpha_n|^2 \right)^{1/2} \left(\sum_{n=1}^{N} (\pi n |\alpha_n|^2) \right)^{1/2}
\]

\[
\leq 2\pi N \sum_{n=1}^{N} |\alpha_n|^2.
\]
Therefore,
\[\sum_{l=1}^{c} |s(x_l)|^2 \leq \left(\frac{1}{5} + 2\pi N \right) \sum_{n=1}^{N} |a_n|^2. \]

2. Arithmetic version

Let \(a_{M+1}, \ldots, a_{M+N} \in \mathbb{C} \) and put \(S(q,a) = \sum_{\substack{m \leq n \leq M+N \\text{}} \quad n \equiv a \pmod{q}^{n}} a_n \).

E.g. if \(A \) is a finite set of integers \(\{M+1, \ldots, M+N\} \), \(a_n = \{1 \text{ if } n \in A, \quad 0 \text{ if } n \notin A \) then \(S(q,A) \) is the number of elements of \(A \) in the residue class \(a \pmod{q} \).

Theorem 6.2 For any \(Q \geq 1 \),
\[
\sum_{q \leq Q} q \sum_{\substack{\chi \neq \chi' \pmod{q} \\text{}} \quad \left| \sum_{d \mid q} \mu(d) S\left(\frac{q}{d}, a \right) \right|^2 \leq C(N+Q^2) \sum_{M \leq n \leq M+N} |a_n|^2,
\]

where \(C \) is the constant from Theorem 6.1.

Proof. For the points \(x_i \), we take the Farey fractions
\[
\left\{ \frac{a}{b} : 1 \leq a \leq Q, 1 \leq b \leq Q, (a,b) = 1 \right\} = \left\{ \frac{1}{Q}, \frac{2}{Q}, \ldots, \frac{Q-1}{Q}, 1 \right\}.
\]

Since \(\| \frac{a}{b} - \frac{a'}{b'} \| = \frac{1}{bb'} \geq \frac{1}{Q^2} \) for any \(\frac{a}{b} \neq \frac{a'}{b'} \), these points are \(\delta \)-spaced with \(\delta = \frac{1}{Q^2} \). By Theorem 6.1,
\[
\sum_{q \leq Q} \sum_{\chi \neq \chi' \pmod{q}} \left| S\left(\frac{q}{d}, a \right) \right|^2 \leq C(N+Q^2) \sum_{M \leq n \leq M+N} |a_n|^2.
\]

We must massage the left side of (6.4). For brevity, write \(\sum_{a}^{*} \) for \(\sum_{\substack{a \neq 1 \pmod{q} \\text{}} \quad \sum_{(a,q)}=1} \).
We interpret $\sum_a^* |S(\frac{a}{b})|^2$ in terms of a discrete Parseval identity.

Let $T(\ell, h) = \sum_a^* S(\frac{a}{b}) e\left(-\frac{ha}{b}\right)$. Then

$$\sum_{h=1}^g |T(\ell, h)|^2 = \sum_{h=1}^g \sum_a^* \sum_{\alpha'}^* S\left(\frac{a}{b}\right) S\left(\frac{-a'}{b}\right) e\left(-\frac{ha}{b}\right) e\left(\frac{ha'}{b}\right)$$

$$= \sum_a^* \sum_{\alpha'}^* S\left(\frac{a}{b}\right) S\left(\frac{-a'}{b}\right) \sum_{h=1}^g e\left(\frac{(a-a')h}{b}\right)$$

$$= g \sum_a^* |S(\frac{a}{b})|^2 .$$

Using the identity for Ramanujan sums

$$c_6(n) = \sum_a^* e\left(\frac{an}{b}\right) = \sum_{d|\ell, n} d \mu(\frac{\ell}{d}) ,$$

we have

$$T(\ell, h) = \sum_a^* S\left(\frac{a}{b}\right) e\left(-\frac{ha}{b}\right)$$

$$= \sum_n a_n \sum_a^* e\left(\frac{(n-h)a}{b}\right)$$

$$= \sum_n a_n c_6(n-h)$$

$$= \sum_n a_n \sum_{d|\ell, n-h} d \mu\left(\frac{n}{d}\right)$$

$$= g \sum_{\ell|\ell} \mu\left(\frac{\ell}{f}\right) \sum_{n=h \mod \frac{\ell}{f}} a_n$$

$$= g \sum_{\ell|\ell} \mu\left(\frac{\ell}{f}\right) S\left(\frac{\ell}{f}, h\right).$$

Therefore, the left side of (6.4) is

$$\sum_{\ell|\ell} \frac{1}{\ell} \sum_{h=1}^g |T(\ell, h)|^2 = \sum_{\ell|\ell} g \left| \sum_{\ell|\ell} \frac{\mu(\ell)}{f} S\left(\frac{\ell}{f}, h\right) \right|^2 ,$$

as desired.
Corollary 6.3

We have

\[\sum_{p \leq \sqrt{N}} \frac{1}{p} \left| \sum_{a=1}^{p} \left(\frac{1}{p} \sum_{n \equiv a \pmod{p}} \frac{1}{N} \sum_{N < n < N+M} a_n \right)^2 \right| \leq \frac{2C}{N} \sum_{n} \left| a_n \right|^2. \]

Proof. Take \(Q = \sqrt{N} \) and restrict the sum over \(p \) in (6.3) to prime \(p \) only. Then divide through by \(N^2 \).

Remarks. Writing \(D(p,a) = \frac{1}{N} \sum_{M < n < M+M} a_n - \frac{1}{N} \sum_{M < n < M+M} a_n \), the left side of (6.5) becomes

\[\sum_{p \leq \sqrt{N}} \frac{1}{p} \left(\sum_{a=1}^{p} \left| D(p,a) \right|^2 \right). \]

\(D(p,a) \) is roughly the difference between the average of \(a_n \) over \(n \equiv a \pmod{p} \) and the average over all \(a_n \). Corollary 6.3 then says that \(D(p,a) \) is small for "most" \(a \) and \(p \).

An important case is when \(a_n \) is the characteristic function of a set \(\mathcal{A} \subseteq \mathbb{Z} \), where \(\mathcal{A} = \{ n \in \mathbb{Z} : n \equiv a \pmod{M} \} \).

Corollary 6.4. For any \(Q \geq 1 \),

\[\sum_{\frac{M}{Q} < p \leq \sqrt{N}} \frac{1}{p} \sum_{a=1}^{p} \left| \sum_{\frac{M}{Q} < d | p} \frac{\mu(d)}{d} Z\left(\frac{d}{a}, p \right) \right|^2 \leq C \left(N + Q^2 \right) Z. \]

Also,

\[\sum_{p \leq Q} \frac{1}{p} \sum_{a=1}^{p} \left| pZ(p,a) - Z \right|^2 \leq C \left(N + Q^2 \right) Z. \]

If \(Q = \sqrt{N} \), (6.6) says roughly that on average over \(p \) and \(a \),

\[\left| pZ(p,a) - Z \right| \ll \sqrt{ZN^{\frac{1}{2}} \log N} \ll N^{\frac{3}{2} \frac{1}{\sqrt{\log N}}}, \]

i.e., for most \(a \) and \(p \), \(Z(p,a) \approx \frac{Z}{p} \), so \(\mathcal{A} \) contains the expected number of elements in the residue class \(a \pmod{p} \). If \(\left| pZ(p,a) - Z \right| \) is large for many \(a \) and \(p \), (6.6) implies that \(Z \) must be small.
Theorem 6.5 (Large Sieve - Sieve version)

Let $N \in \{M+1, \ldots, M+N\}$ and define $Z, Z(p, a)$ as above. Suppose, for each prime p, there are $\mathfrak{g}(p)$ residue classes $a \bmod p$ with $Z(p, a) = 0$. Assume $\mathfrak{g}(p) < p$ for all p and for squarefree g, write

$$h(g) = \frac{\mathfrak{g}(p)}{p}.$$

Then

$$Z \leq \frac{c(N+Q^2)}{J}, \quad J = \sum_{g \leq Q} \mu^2(g) h(g) \quad (= G(\mathfrak{q}) \text{ from Selberg sieve})$$

Remarks: If $\mathfrak{g}(p) = p$ for some p, then $Z = 0$.

Theorem 6.5 is very similar to Selberg’s sieve (Theorem 15), and both give roughly the same strength results when $\mathfrak{g}(p)$ is bounded on average. When $\mathfrak{g}(p)$ is quite large, the error term in Selberg’s sieve is difficult to manage, while the error in Theorem 6.5 (the Q^2 term) is quite easy.

Proof. We shall prove that for any $a_{m+1}, \ldots, a_{m+n} \in C$, s.t. $S(p, a) = 0$ for $p(r) \mod p$-value

$$\sum_{\mathfrak{a}} |S(\mathfrak{a}/p)|^2 \geq S(p)^2 h(g). \quad (\mu^2(g) = 1).$$

Then, by (6.4),

$$c(N+Q^2)Z = \sum_{g \leq Q} Z^2 h(g),$$

as desired. First we show (6.7) when $g = p, p$ a prime. From the proof of Theorem 6.2,

$$\sum_{\mathfrak{a}} |S(\mathfrak{a}/p)|^2 = \frac{1}{p} \sum_{h=1}^{p} |T(p, h)|^2,$$

where $T(p, h) = p(S(p, h) - \frac{1}{p} S)$, $S = S(1, 1) = \sum_{n} a_n$. Then

$$\sum_{\mathfrak{a}} |S(\mathfrak{a}/p)|^2 = p \sum_{h=1}^{p} \left| S(p, h) - \frac{S}{p} \right|^2 = p \sum_{h=1}^{p} S(p, h)^2 - 2p \sum_{h=1}^{p} S(p, h) + |S|^2 \geq p \sum_{h=1}^{p} |S(p, h)|^2 - |S|^2.$$
By Cauchy-Schwarz,
\[
|S|^2 = \left(\sum_{h=1}^{p} S(p,h) \right)^2 = \left(\sum_{\substack{1 \leq h \leq p \\text{s.t.} \; S(p,h) \neq 0}} S(p,h) \right)^2
\]
\[
\leq \left(\sum_{1 \leq h \leq p} 1 \right) \left(\sum_{1 \leq h \leq p} |S(p,h)|^2 \right) \leq \left(p - g(p) \right) \sum_{h=1}^{p} |S(p,h)|^2.
\]

Thus
\[
\sum_{\alpha} |S(\alpha)|^2 \geq \frac{p}{p-g(p)} |S|^2 - |S|^2 = h(p) |S|^2 = h(p) |S(o)|^2.
\]

Next, suppose (6.7) holds for \(g=r \) and \(g=s \), where \((r,s)=1\).
Every \(c, 1 \leq c \leq rs \), \((c, rs)=1\) may be written uniquely as \(c = er + fs \) (mod rs) with \(1 \leq e \leq s, 1 \leq f \leq r \), \((e,s)=1, (f,r)=1\). Then
\[
\sum_{1 \leq c \leq rs \atop (c, rs)=1} |S(\frac{e}{s} + \frac{f}{r})|^2 = \sum_{1 \leq e \leq s \atop (e,s)=1} \sum_{1 \leq f \leq r \atop (f,r)=1} |S(\frac{e}{s} + \frac{f}{r})|^2.
\]

Since (6.7) holds with \(g=s \) and all sets \(a_{n+1}, \ldots, a_{n+m} \) of complex numbers, it holds with \(a_n \) replaced by \(a_n e^{2\pi i n/r} \), i.e.,
\[
\sum_{1 \leq e \leq s \atop (e,s)=1} \left| S(\frac{e}{s} + \frac{f}{r}) \right|^2 = \sum_{1 \leq e \leq s \atop (e,s)=1} \left| S*(\frac{e}{s}) \right|^2 ; \quad S*(x) = \sum_n (a_n e^{\frac{2\pi i n x}{r}}) e^{\frac{2\pi i nx}{r}}
\]
\[
\geq h(s) \left| S*(0) \right|^2 = h(s) \left| S(\frac{f}{r}) \right|^2.
\]

Thus
\[
\sum_{1 \leq c \leq rs \atop (c, rs)=1} \left| S(\frac{c}{rs}) \right|^2 \geq h(s) \sum_{1 \leq f \leq r \atop (f,r)=1} \left| S(\frac{f}{r}) \right|^2 \geq h(s) g(r) \left| S(0) \right|^2,
\]

i.e. (6.7) holds with \(g=rs \). By induction on the number of prime factors of \(g \), (6.7) holds for all square-free \(g \).

App. primes in \((x, y, x)\), Brun-Titchmarsh thm.
Applications

A. "pseudo-squares." Suppose \(\mathcal{N} \subseteq [1, \ldots, N] \), and for \(3 \leq p \leq \sqrt{N} \), \(\mathcal{N} \) avoids \(\frac{p-1}{2} \) residue classes modulo \(p \), and let \(Z = |\mathcal{N}| \). In the notation of Theorem 6.5, for odd squarefree \(q \),

\[
\nu(q) = \prod_{p | q} \frac{p-1}{p-2} = \frac{\phi(q)}{\sigma(q)}
\]

Take \(Q = \sqrt{N} \). By Theorem 6.5,

\[
Z \leq 2CN \frac{L}{L} \equiv \sum_{\substack{q \leq Q \text{ odd} \atop \mathcal{N} \text{ avoids } q}} \frac{\nu(q) \phi(q)}{\sigma(q)} \Rightarrow Q = \sqrt{N}.
\]

Hence

\[
(6.8) \quad Z = \sqrt{N}.
\]

An example of such a set \(\mathcal{N} \) is the set of squares \(\leq N \). The \(\frac{p-1}{2} \) residue classes which \(\mathcal{N} \) avoids are those corresponding to quadratic nonresidues mod \(p \). So (6.8) gives the correct order of \(Z \). The power of (6.8) is that it remains true no matter which residue classes are avoided.

B. (Heilbronn, 1958). Average of \(\left(\frac{p}{q} \right) \) over primes \(p, p' \).

Theorem Suppose \(Q \geq 3 \). Then

\[
\left| \sum_{p \leq Q} \sum_{p' \leq Q} \left(\frac{p'}{p} \right) \right| \ll Q^{1/4} \left(\log Q \right)^{-5/4}.
\]

Remark. The trivial bound is \(\pi(Q)^2 \ll Q^2 (\log Q)^{-2} \).

Proof. Denote by \(H \) the double sum on the left side. By Cauchy–Schwarz,

\[
H^2 \leq \left(\sum_{3 \leq p \leq Q} 1 \right) \left(\sum_{3 \leq p' \leq Q} \left| \sum_{3 \leq p'' \leq Q} \left(\frac{p'}{p} \right) \right|^2 \right)
\]

\[
\leq \pi(Q) \sum_{3 \leq p \leq Q} \sum_{3 \leq p' \leq Q} \left(\frac{p'}{p} \right) \left(\frac{p''}{p'} \right)
\]

\[
\leq \pi(Q) \sum_{3 \leq p \leq Q} \left\{ \pi(Q) + 2 \sum_{3 \leq p' \leq Q} \left(\frac{p''}{p} \right) \right\}.
\]
Let \(\mathcal{N} = \{ p^m \} \) for \(3 \leq p < P' \leq Q \in \mathbb{Z}_+ \), so \(\mathcal{N} = \frac{1}{2} \pi(a) \pi(a) - 1 \). Then
\[
H^2 \leq \pi(a)^3 + 2 \pi(a) \sum_{3 \leq p \leq a} \left| \sum_{n \in \mathcal{N}} \left(\frac{n}{p} \right) \right|.
\]

By Cauchy–Schwarz again,
\[
\sum_{3 \leq p \leq a} \left| \sum_{n \in \mathcal{N}} \left(\frac{n}{p} \right) \right| \leq \pi(a)^3 \left\{ \sum_{3 \leq p \leq a} \left(\sum_{n \in \mathcal{N}} \left(\frac{n}{p} \right) \right)^2 \right\}^{1/2}.
\]

Using \(\sum_{h=1}^{p} \left(\frac{h}{p} \right) = 0 \), we have
\[
\sum_{n \in \mathcal{N}} \left(\frac{n}{p} \right) = \sum_{h=1}^{p} \sum_{n \in \mathcal{N} \mod p} \left(\frac{n}{p} \right) = \sum_{h=1}^{p} \left(\frac{h}{p} \right) Z(p, h)
\]
\[
= \sum_{h=1}^{p} \left(\frac{h}{p} \right) \left(Z(p, h) - \frac{Z}{p} \right).
\]

By another application of Cauchy–Schwarz,
\[
\left(\sum_{n \in \mathcal{N}} \left(\frac{n}{p} \right) \right)^2 \leq \left(\sum_{h=1}^{p} \left(\frac{h}{p} \right)^2 \right) \left(\sum_{h=1}^{p} \left| Z(p, h) - \frac{Z}{p} \right|^2 \right)
\]
\[
\leq p \sum_{h=1}^{p} \left| Z(p, h) - \frac{Z}{p} \right|^2.
\]

Hence
\[
H^2 \leq \pi(a)^3 + 2 \pi(a) \left\{ \sum_{3 \leq p \leq a} \left(\frac{Z}{p} \right)^2 \right\}^{1/2}.
\]

By Corollary 6.4, (6.6), the expression in braces is \(\leq C Q^2 Z \leq C Q^2 \pi(a)^2 \).

Hence
\[
H^2 \ll \left(\frac{a}{\log Q} \right)^3 + \left(\frac{Q}{\log Q} \right)^{3/2} \left(\frac{Q}{\log^2 Q} \right)^{1/2} \ll \frac{Q}{(\log Q)^{5/2}}.
\]

C. Least quadratic non-residue modulo a prime

\[
n(p) = \min \left\{ n \in \mathbb{N} : \left(\frac{n}{p} \right) = -1 \right\}
\]

Estimates:
\[
n(p) \ll p \log p \quad \text{(from Pólya–Vinogradov Thm)}
\]
\[
n(p) \ll p \frac{\log^2 p}{p} \quad \text{(best known; Burgess est. + "Vinogradov trick")}
\]
\[
n(p) \ll \log p \quad \text{(Ankeny; assumes ERH for Dirichlet L-funct.)}
\]
Theorem 6.6 (Linnik)

Fix $\varepsilon > 0$. There is a constant $C(\varepsilon)$ so that for all $N \geq 3$,

$$\left| \{3 \leq p \leq N : n(p) > N^{\varepsilon^2} \} \right| \leq C(\varepsilon).$$

Corollary

Fix any fixed $\varepsilon > 0$,

$$\left| \{3 \leq p \leq N : n(p) > p^{\varepsilon^3} \} \right| \ll \varepsilon \log \log N.$$

Proof of Corollary

Define J by $N^{2-j} \leq \varepsilon < N^{2-j+1}$, so that $J = \left\lfloor \frac{\log \log N}{\log 2} \right\rfloor + 1$. Then

$$\left| \{3 \leq p \leq N : n(p) > p^{\varepsilon^3} \} \right| = \sum_{j=1}^{\varepsilon} \left| \{N^{2-j} < p \leq N^{2-j+1} : n(p) > p^{\varepsilon^3} \} \right|$$

$$\leq \sum_{j=1}^{\varepsilon} \left| \{p \leq N^{2-j+1} : n(p) > (N^{2-j+1})^{\varepsilon/2} \} \right|$$

$$\leq C(\varepsilon)J \ll \varepsilon \log \log N.$$

Proof of Theorem 6.6

Apply Theorem 6.5 with the set $\mathcal{N} = \{1 \leq n \leq N^2 : p^\varepsilon(n) \leq N^{\varepsilon^2} \}$.

If $p > 3$ and $n(p) > N^\varepsilon$, then $\left(\frac{n}{p} \right) = 1$ for primes $g \leq N^\varepsilon$. Hence,

$(\frac{n}{p}) = 1$ for all $n \in \mathcal{N}$. Hence \mathcal{N} avoids $\frac{p-1}{2} = g(p)$ residue classes mod p, for every such prime p. Take $a = N$. Also

$$L = \sum_{\substack{g \leq a \ \text{mod} \ p_b \ \text{are} \ \frac{p-1}{2} \ \text{and} \ \frac{p+1}{2}?}} \frac{p(\mathcal{P})}{p} \geq \sum_{3 \leq p \leq N} \frac{p-1}{p+1} \geq \frac{1}{2} \# \{3 \leq p \leq N : n(p) > N^{\varepsilon^2} \}.$$

Theorem 6.5 gives

$$|\mathcal{N}| \leq \frac{C(N^2 + a^2)}{L} \leq \frac{4N^2}{\# \{3 \leq p \leq N : n(p) > N^{\varepsilon^2} \}}.$$

On the other hand, $|\mathcal{N}| = \psi(N^2, N^\varepsilon) \gg \varepsilon N^2$ by Theorem 5, and the theorem follows.
3. Character sum version of large sieve, Bombieri-Vinogradov Theorem

Recall that a Dirichlet character χ mod q is **primitive** if there is no character ψ mod q', $q' | q$, so that $\chi = \psi \chi_0$, where χ_0 is the principal character mod q. Equivalently, for all $q', q', q' < q$, there is an l so that $\chi(lq' + 1) \neq \{0, 1\}$.

Lemma 6.2 If χ is a primitive character mod $q > 1$, then for any n,

$$\chi(n) \tau(\chi) = \sum_{h=1}^{q} \overline{\chi}(h) e\left(\frac{nh}{q}\right),$$

where

$$\tau(\chi) = \sum_{m=1}^{q} \overline{\chi}(m) e\left(\frac{m}{q}\right) = \sum_{q=1}^{q} \overline{\chi}(m) e\left(\frac{m}{q}\right)$$

is the Gauss sum for χ.

Proof If $(n, q) = 1$, then

$$\chi(n) \tau(\chi) = \sum_{m=1}^{q} \overline{\chi}(m) \chi(n) e\left(\frac{m}{q}\right) = \sum_{h=1}^{q} \overline{\chi}(h) e\left(\frac{nh}{q}\right).$$

If $q | n$, both sides are zero since $\sum_{h=1}^{q} \overline{\chi}(h) = 0$. Suppose $(n, q) = d > 1$ and $q' | n$. Then $n = n', q = q_1$, and

$$\sum_{h=1}^{q} \overline{\chi}(h) e\left(\frac{nh}{q}\right) = \sum_{c=0}^{\frac{q}{d_1}} c\left(\frac{cn}{q_1}\right) \sum_{l=0}^{d-1} \overline{\chi}(q_1 l + c).$$

Note $S(c + q_1) = S(c)$ (replace l with $l - 1$). Thus, if $(n, q) = 1$ and $n \equiv 1 \mod q_1$ then

$$\overline{\chi}(n) S(c) = \sum_{l=0}^{d-1} \overline{\chi}(q_1 l + vc) = \sum_{l=0}^{d-1} \overline{\chi}(q_1 + vc) = S(vc) = S(c).$$

If $S(c) \neq 0$, then $\overline{\chi}(n) \notin \{0, 1\}$ for all such $n \Rightarrow \chi$ is primitive.

Hence $S(c) = 0$ for every c, hence

$$\sum_{h=1}^{q} \overline{\chi}(h) e\left(\frac{nh}{q}\right) = 0 = \chi(n) \tau(\chi).$$
Lemma 6.3 If χ is a primitive character mod g, then
$$|\tau(\chi)| = \sqrt{g}.$$

Proof By Lemma 6.2,
$$|\chi(n)|^2 \cdot |\tau(\chi)|^2 = \sum_{h_1=1}^{g} \sum_{h_2=1}^{g} \overline{\chi}(h_1) \chi(h_2) e\left(\frac{n(h_1-h_2)}{g}\right).$$

Summing over $1 \leq n \leq g$ gives
$$\phi(g) |\tau(\chi)|^2 = \sum_{h_1=1}^{g} \sum_{h_2=1}^{g} \overline{\chi}(h_1) \chi(h_2) \sum_{h=1}^{g} e\left(\frac{n(h_1-h_2)}{g}\right).$$

The sum an n is zero unless $h_1 = h_2$, in which case the sum is g. Hence
$$\phi(g) |\tau(\chi)|^2 = g \sum_{h=1}^{g} |\overline{\chi}(h)|^2 = g \phi(g),$$

hence $|\tau(\chi)| = \sqrt{g}$.

Theorem 6.7 (Polya & Vinogradov 1918)

For any non-primitive Dirichlet character χ mod g, and any $A, B \in \mathbb{R},$
$$\left| \sum_{A \leq n \leq B} \chi(n) \right| \ll \sqrt{g} \log g.$$

Proof (For primitive characters)

By Lemma 6.2,
$$\sum_{A \leq n \leq B} \chi(n) = \frac{1}{\tau(\chi)} \sum_{h=1}^{g-1} \overline{\chi}(h) \sum_{A \leq n \leq B} \frac{e\left(\frac{n h}{g}\right)}{\frac{h}{g}}.$$

Next,
$$\left| \sum_{A \leq n \leq B} e\left(\frac{n h}{g}\right) \right| = \left| \frac{e\left(\frac{hB}{g}\right)\overline{\chi}(h+1) - 1}{e\left(\frac{hB}{g}\right) - 1} \right| \leq \frac{2}{|e(hB/2) - 1|} \leq \frac{1}{2\|hB\|},$$

where $\|x\|$ = distance from x to the nearest integer. Therefore,
$$\left| \sum_{A \leq n \leq B} \chi(n) \right| \leq \frac{1}{\tau(\chi)} \sum_{h=1}^{g-1} \frac{1}{2\|hB\|}$$
$$= \frac{1}{2\sqrt{g}} \left(\sum_{1 \leq h \leq \sqrt{g}/2} \frac{g}{h} + \sum_{\sqrt{g}/2 < h \leq g-1} \frac{g}{g-h} \right)$$
$$\leq \frac{g}{2\sqrt{g}} \left(\log \frac{g}{2} + 1 + \log \frac{g}{2} + 1 \right) \ll \sqrt{g} \log g.$$

Corollary

(i) $n(p) \ll \sqrt{p} \log p$ (show details)

(ii) $n(p) \ll p^{1/8+\epsilon}$ for all $\epsilon > 0$ (exercise)
Let \(\mathcal{C}(q) = \text{set of Dirichlet characters modulo } q \)
\(\mathcal{C}^*(q) = \text{set of primitive characters } \in \mathcal{C}(q). \)

Theorem 6.8 Let \(a_{m+1}, \ldots, a_{m+N} \in \mathcal{C} \) and put

\[
U(X) = \sum_{m+1 \leq n \leq m+N} a_n \chi(n).
\]

For any \(Q \geq 1, \) we have

\[
\sum_{q \leq Q} \frac{q}{\varphi(q)} \sum_{\chi \in \mathcal{C}^*(q)} |U(X)|^2 \leq C(N+Q^2) \sum_{m+1 \leq n \leq m+N} |a_n|^2.
\]

Proof. Apply Lemma 6.2 and sum over \(n :\)

\[
\mathcal{C}(X) U(X) = \sum_{h=1}^{g} \overline{\chi}(h) \sum_{m+1 \leq n \leq m+N} a_n \xi \left(\frac{n}{q} \right) = \sum_{h=1}^{g} \overline{\chi}(h) S(h/q),
\]

where

\[
S(x) = \sum_{m+1 \leq n \leq m+N} a_n \xi(x).
\]

Therefore,

\[
\sum_{\chi \in \mathcal{C}^*(q)} |\mathcal{C}(X) U(X)|^2 = \sum_{\chi \in \mathcal{C}^*(q)} \left| \sum_{h=1}^{g} \overline{\chi}(h) S(h/q) \right|^2
\]

\[
\leq \sum_{\chi \in \mathcal{C}(q)} \left| \sum_{h=1}^{g} \overline{\chi}(h) S(h/q) \right|^2
\]

\[
= \sum_{h_1, h_2 = 1 \atop (h_1, q) = 1}^{g} s(h_1/q) S(h_2/q) \sum_{\chi \in \mathcal{C}(q)} \overline{\chi}(h_1) \chi(h_2).
\]

By orthogonality, the inner sum is 0 unless \(h_1 = h_2, \) in which case the sum is \(\varphi(q). \) Applying Lemma 6.3,

\[
\sum_{\chi \in \mathcal{C}^*(q)} |U(X)|^2 \leq \phi(q) \sum_{h=1 \atop (h, q) = 1}^{g} |S(h/q)|^2.
\]

By Theorem 6.1,

\[
\sum_{q \leq Q} \frac{q}{\varphi(q)} \sum_{\chi \in \mathcal{C}^*(q)} |U(X)|^2 \leq \sum_{g \leq Q} \left(\sum_{h=1 \atop (h, q) = 1}^{g} |S(h/q)|^2 \right) \leq C(N+Q^2) \sum_{m+1 \leq n \leq m+N} |a_n|^2.
\]
Theorem 6.9 (Large sieve, character version with bilinear forms)

For any complex numbers \(a_1, \ldots, a_M, b_1, \ldots, b_N\) and any \(Q > 1\), we have

\[
\sum_{q \leq Q} \left| \hat{f}(q) \int_{\mathbb{R}} f(x) \frac{x}{q} \, dx \right| \leq \frac{M \log(1 + Q)}{(4\pi)^{1/2}} \sqrt{(\sum_{m=1}^{M} |a_m|^2)^{1/2} (\sum_{n=1}^{N} |b_n|^2)^{1/2} \log(2MN)}.
\]

Remark: double sum on \(m, n\) is \(\sum_{m \equiv u \pmod{u}} a_m \chi(m), \sum_{n \equiv v \pmod{v}} b_n \chi(n)\).

Proof. To handle the condition \(mn \equiv u\), recall an identity used in a truncated version of Perron’s formula:

\[
\int_{c-iT}^{c+IT} \frac{y^s}{s} ds = \delta(y) + O\left(\frac{y^c}{T \log y} \right) \quad (c > 0, y > 0, y \neq 1, T > 1)
\]

where \(\delta(y) = \begin{cases} 1 & 0 < y < 1 \\ 0 & y > 1 \end{cases}\). Without loss of generality (WLOG), let \(u = u_0 + \frac{1}{T}, u_0 \in \mathbb{Z}, 0 < u_0 < MN\).

Then

\[
\sum_{m=1}^{M} \sum_{n=1}^{N} a_m b_n \chi(mn) = \sum_{m=1}^{M} \sum_{n=1}^{N} a_m b_n \chi(mn) \delta\left(\frac{u}{mn}\right)
\]

\[
= \frac{1}{2\pi i} \int_{c-IT}^{c+IT} \frac{y^s}{s} \left(\sum_{m=1}^{M} a_m \chi(m) m^{-s} \right) \left(\sum_{n=1}^{N} b_n \chi(n) n^{-s} \right) ds
\]

\[
+ O\left(\frac{1}{T} \sum_{m,n} \frac{(y_{mn})^c}{|\log y_{mn}|} |a_m b_n| \right).
\]

In the error term,

\[
\left| \frac{1}{\log y_{mn}} \right| = \frac{1}{y_{mn}} \gg \frac{1}{MN}.
\]

Put \(c = \frac{1}{\log(2MN)}\) so that \(|u^s| \ll 1\) and \((y_{mn})^c \ll 1\). Then the left side above is

\[
\ll \int_{c-IT}^{c+IT} \frac{1}{|s|} |A(s, x)| \cdot |B(s, x)| \cdot |ds| + \frac{MN}{T} \sum_{m,n} |a_m b_n|
\]

uniformly in \(u\). Hence, the left side of (6.9) is, by the Cauchy–Schwarz inequality,

\[
\ll \int_{c-IT}^{c+IT} \left(\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{x \in \mathbb{C}(q)} |A(s, x)|^2 \right)^{1/2} \left(\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{x \in \mathbb{C}(q)} |B(s, x)|^2 \right)^{1/2} ds
\]

\[
+ \sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{x \in \mathbb{C}(q)} \frac{(MN)^{3/2}}{T} \left(\sum_{m} |a_m|^2 \right)^{1/2} \left(\sum_{n} |b_n|^2 \right)^{1/2} O(Q^2).
\]
By Theorem 6.8,
\[\sum_{g \leq Q} \frac{g}{\phi(g)} \sum_{\chi \in \chi^*(g)} |A(g, \chi)|^2 \leq C(M+Q^2) \sum_{m=1}^{M} |a_m m^{-s}|^2 \ll (M+Q^2) \sum_{m=1}^{M} |a_m|^2 \]
and similarly
\[\sum_{g \leq Q} \frac{g}{\phi(g)} \sum_{\chi \in \chi^*(g)} |B(g, \chi)|^2 \ll (N+Q^2) \sum_{n=1}^{N} |b_n|^2 . \]
Finally,
\[\int_{c-iT}^{c+iT} \frac{1}{s} ds = \int_{c-iT}^{c+iT} dt \frac{1}{1+it} \leq \frac{2}{C} + 2 \int_{c-iT}^{c+iT} dt \frac{1}{t} \leq 2 \log (2TMN) . \]
Therefore, the left side of (6.9) is
\[\ll \left(\sum_{m=1}^{M} |a_m|^2 \right)^{\frac{1}{2}} \left(\sum_{n=1}^{N} |b_n|^2 \right)^{\frac{1}{2}} \left((M+Q^2)^{\frac{1}{2}} (N+Q^2)^{\frac{1}{2}} \log (2TMN) + Q^{2} \frac{\log (2MN)}{T} \right) . \]
Taking \(T = (MN)^{1/2} \) completes the proof.

Theorem BV (Bombieri; A.I. Vinogradov, 1965)
For every \(A > 0 \) there is a \(B \) so that
\[\sum_{g \leq x^{\frac{2}{3}}(\log x)^{-B}} \max_{\chi \neq 1} \max_{y \leq x} \left| \pi(y, \chi, g) - \frac{\xi(y)}{\phi(g)} \right| \ll \frac{x}{(\log x)^A} . \]

Theorem BV
For every \(A > 0 \) there is a \(B \) so that
\[\sum_{g \leq x^{\frac{2}{3}}(\log x)^{-B}} \max_{\chi \neq 1} \max_{y \leq x} \left| \psi(y, \chi, g) - \frac{y}{\phi(g)} \right| \ll \frac{x}{(\log x)^A} , \quad \psi(y, \chi, g) = \sum_{n \leq y} \Lambda(n) . \]

Exercise Show Theorems BV, BV* are equivalent.
Let \(\psi(y, x) = \sum_{n \leq y} \chi(n) \Lambda(n) \).

Lemma 6.4 For \(1 \leq q \leq x \),

\[
\sum_{g \leq q} \max \max_{y \leq x} \left| \frac{\psi(y; g, \alpha)}{\phi(q)} - \frac{y}{\phi(q)} \right| \ll \frac{1}{\phi(q)} \sum_{\chi \in \mathcal{C}(g)} \max_{y \leq x} |\psi(y, x)|.
\]

Here \(c > 0 \) is a constant.

Proof Start with the orthogonality relation

\[
\psi(y; g, \alpha) = \frac{1}{\phi(q)} \sum_{\chi \in \mathcal{C}(g)} \chi(\alpha) \psi(y, x),
\]

which implies

\[
\left| \frac{\psi(y; g, \alpha)}{\phi(q)} - \frac{y}{\phi(q)} \right| \leq \frac{1}{\phi(q)} \left(\left| \psi(y, x) - y \right| + \sum_{\chi \in \mathcal{C}(g)} \max_{y \leq x} |\psi(y, x)| \right).
\]

Now reduce the problem to sums \(\psi(y, x) \) with \(\chi \) primitive. For general \(\chi \in \mathcal{C}(g) \), if \(\chi \) is induced by the primitive character \(\chi_1 \mod q_1 \), then \(\chi(p) = \chi_1(p) \) for all primes \(p \) except those with \(p \equiv 1 \pmod{q_1} \). Hence

\[
\left| \psi(y, x) - \psi(y, x_1) \right| \leq \sum_{1 \leq p \leq y} \log p \leq \sum_{1 \leq p \leq y} \log p \cdot \left[\frac{\log y}{\log p} \right]
\]

\[
\ll \log y \cdot \frac{\log y}{\log p} \ll \log^2 y.
\]

Setting \(E^*(x, g) = \max_{y \leq x} \frac{\psi(y; g, \alpha) - y}{\phi(q)} \), we obtain

\[
E^*(x, g) \leq \max_{\chi \in \mathcal{C}(g)} \left[\left(\psi(y, x_1) - y \right) + \sum_{\chi \in \mathcal{C}(g)} \max_{y \leq x} |\psi(y, x)| + O\left(\frac{\log^2 y}{\log \phi(q)} \right) \right]
\]

\[
\ll \log^2 x + \frac{x e^{-c_0 \log x}}{\phi(q)} + \frac{1}{\phi(q)} \sum_{\chi \in \mathcal{C}(g)} \max_{y \leq x} |\psi(y, x)|
\]

by the Prime Number Theorem, where \(c_0 > 0 \) is a constant. A given \(\chi_1 \mod q_1 \) induces characters \(\chi \mod g \) only for \(g_1 \mid g \). Hence

\[
\sum_{g \leq q} E^*(x, g) \ll \frac{1}{\phi(q)} \sum_{g \leq q} \frac{1}{\phi(q)} \sum_{\chi \in \mathcal{C}(g)} \max_{y \leq x} |\psi(y, x)| = \sum_{\ell \leq q} \frac{1}{\phi(q)} \mathcal{O}\left(\frac{1}{\log \phi(q)} \right).
\]

Lastly, \(\phi(q) \mid \phi(q) \phi(q) \) and

\[
\sum_{m \leq z} \frac{1}{\phi(m)} \leq \sum_{p \mid (m) \leq z} \frac{1}{\phi(m)} = \prod_{p \leq z} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \ldots \right) = \prod_{p \leq z} \left(1 - \frac{1}{p} \right)^{-1} \left(1 + \frac{1}{p} + \frac{1}{p^2} \right)
\]

\[
\ll \log z.
\]
Theorem SW (Siegel-Walfisz theorem)

For any fixed \(C > 0 \), and uniformly for primitive \(x \mod q \), \(q \leq (\log x)^C \), we have
\[
|\Psi(y,x)| \ll y e^{-c' \sqrt{\log y}}, \quad c' > 0.
\]

Remark For \(c > 1 \), the implied constant is ineffective - it depends on \(C \) only, but a specific value cannot be found. For a proof, see H. Davenport, Multiplicative number theory.

Corollary For any \(C > 0 \),
\[
\sum_{2 \leq y \leq (\log x)^C} \frac{1}{\phi(y)} \sum_{\chi \leq C(y)} \max_{y \leq x} |\Psi(y,x)| \ll \sqrt{x} e^{-C \sqrt{\log x}}, \quad \text{where} \quad c'' > 0 \quad \text{depends on} \quad C.
\]

Proof Write
\[
\max_{y \leq x} |\Psi(y,x)| \leq \Psi(x^{1/2}) + \max_{x^{1/2} < y \leq x} |\Psi(y,x)|
\]
and apply Theorem SW (with \(C \) replaced by \(C/4 \)) to right side.

Prime Decomposition (subatomic theory)

basic example: \(\Lambda * 1 = \log \Rightarrow \Lambda = \log * \mu \)

as Dirichlet series: \(-\frac{\zeta'}{\zeta}(s) = -\frac{\zeta'(s)}{\zeta(s)} \)

more sophisticated decomposition: parameter \(U > 1 \).

\[
\Lambda(n) = \sum_{ab = n} \mu(a) \log b,
\]

separately consider \(a \leq U \) and \(a > U \).

If \(n > U \), then
\[
\sum_{ab = n} \mu(a) \log b = \sum_{cln} \Lambda(c) \sum_{a \leq n/c} \mu(a)
\]

where sum \(0 \) if \(c > n/U \)

\[
= -\sum_{cln} \Lambda(c) \sum_{a \leq n/c} \mu(a)
\]
since \(\sum_{a \leq n/c} \mu(a) = 0 \) for \(c < n \).

(6.10)
Lemma 6.5. Let χ be a primitive character of conductor $g \geq 2$, $\gamma \geq 2$ and $u > 1$. Then

$$\psi(y, x) = -\sum_{b \leq y, c \leq u} \Lambda(c) \chi(bc) \sum_{a \leq u} \mu(a) + O\left(u^2 g^{1/2} \log g \log y\right)$$

Proof. If $y \leq u^2$, then the lemma follows from

$$|\psi(y, x)| \leq \sum_{n \leq y} \Lambda(n) \ll y \ll u^2.$$

Now let $y > u^2$. By (6.10), we have

$$\psi(y, x) = \psi_1 + \psi_2 + \psi_3 + \psi_4,$$

where

$$\psi_1 = \sum_{n \leq u^2} \chi(n) \Lambda(n) \ll u^2,$$

$$\psi_2 = \sum_{a \leq u, b \leq y} \mu(a) \chi(a) \log b \chi(b) \ll \sum_{a \leq u} \left| \sum_{b \leq y/a} \chi(b) \log b \right|,$$

$$\psi_3 = -\sum_{a \leq u, c \leq u, b \leq y/a} \chi(c) \mu(a) \chi(ac) \sum_{b \leq y/ac} \chi(b), \quad (n = abc),$$

$$\psi_4 = -\sum_{b \leq u, c \leq u, b \geq y} \chi(c) \mu(b) \chi(bc) \sum_{a \leq u} \chi(a). \quad (n = abc)$$

By the Pólya–Vinogradov inequality (Theorem 6.7),

$$\sum_{A \leq b \leq B} \chi(b) \log b = \log B \sum_{A \leq b \leq B} \chi(b) - \log A \sum_{A \leq b \leq A} \chi(b) + \sum_{A \leq b \leq A} \chi(b) \log b \ll \log B \max_{b \leq B} |\sum_{A \leq b \leq B} \chi(b)| \ll g^{1/2} \log g \log y.$$

Hence

$$|\psi_2| \ll u g^{1/2} \log g \log y.$$

Also by Theorem 6.7,

$$|\psi_3| \ll \sum_{a \leq u} \Lambda(c) \sum_{a \leq u} \left(g^{1/2} \log g \right) \ll u^2 g^{1/2} \log g.$$
Proof of Theorem BV

Start with Lemma 6.4. The corollary to Theorem SW takes care of the terms with \(g \neq (\log x)^c \). Suppose \(x^{1/2} < a \leq x^{1/2} \), \(1 < u \leq Q \). By Lemma 6.5,

\[
(6.11) \quad \sum_{q \leq Q} \max_{a \leq q} \| \psi(y, s, q) - \frac{Q}{q} \psi \|_{s, \infty} \ll x e^{-c_{1} \sqrt{\log x}} + \log x \left(D_1 + D_2 \right),
\]

where

\[
D_1 = \sum_{a \leq q} \frac{1}{\phi(q)} \sum_{\chi \in C(q)} u^2 q \frac{1}{y} \log y \log x \ll \frac{Q^2 \log^2 x}{y},
\]

and, using Theorem 6.9,

\[
D_2 = \sum_{(y, x) \leq \frac{Q}{y}} \frac{1}{\phi(q)} \sum_{\chi \in C(p)} \max_{y \leq x} \left| \sum_{b \leq y, c \leq U} \Lambda(c) \chi(b c) \sum_{a \leq u} \mu(a) \right|
\ll \log^3 x \max_{y \leq \frac{Q}{y}} \frac{1}{Q_0} \max_{y \leq b \leq \frac{c}{y}} \frac{1}{U} \sum_{a \leq q} \frac{1}{\phi(q)} \sum_{\chi \in C(q)} \max_{y \leq x} \left| \sum_{b \leq y, c \leq U} \Lambda(c) \chi(b) \sum_{a \leq u} \mu(a) \right|
\ll \log^3 x \max_{a, b, c, c_0} \frac{1}{b_0} \left(\frac{b_0 + Q_0}{c_0} \right) \left(c_0^2 + Q_0 \right) \left(\sum_{c = 2c_0} \Lambda(c)^2 \right)^{1/2} \left(\sum_{b \leq 2b_0} \chi(b)^2 \right)^{1/2} \log \left(b_0 c_0 \right).
\]

By Chebyshev's estimates,

\[
\sum_{c \leq 2c_0} \Lambda(c)^2 \ll c_0 \log c_0.
\]

Also,

\[
\sum_{b \leq 2b_0} \chi(b)^2 \leq 2b_0 \sum_{b \leq 2b_0} \frac{\chi(b)^2}{b} \leq 2b_0 \sum_{p \leq 2b_0} \frac{\chi(b)^2}{b} \ll 2b_0 \prod_{p \leq 2b_0} \left(1 + \frac{2}{p} + \frac{2}{p^2} \right) \ll b_0 \left(\log b_0 \right)^4.
\]

Thus,

\[
D_2 \ll \left(\log x \right)^{1/2} \max_{a, b, c, c_0} \frac{b_0 c_0}{Q_0} \left(\frac{b_0 + c_0}{c_0} + \frac{b_0 + c_0}{c_0} Q_0 + Q_0^2 \right)
\ll \left(\log x \right)^{1/2} \max_{a, b, c, c_0} \left(\frac{x}{Q_0} + \frac{x}{u^2} + x^{1/2} Q_0 \right)
\ll \left(\log x \right)^{1/2} \left(\frac{x}{Q_0} + \frac{x}{u^2} + x^{1/2} Q_0 \right).
\]

The left side of (6.11) is therefore

\[
\ll \frac{x}{\left(\log x \right)^{c - c_{1/2}}} + \frac{x}{\left(\log x \right)^{c_{1/2}}} + x^{1/2} \left(\log x \right)^{1/2} Q + Q^2 U^{3/2} \log^3 x + U^2 Q^{3/2} \log^3 x.
\]

Take \(C = A + 15/2 \), \(U = \left(\log x \right)^{2A + 15} \), \(Q = x^{1/2} \left(\log x \right)^{-B} \), \(B = A + 15/2 \), and the above is \(O \left(\frac{x}{\left(\log x \right)^{A}} \right) \).
Theorem BDH (Baker, Davenport - Halberstam (1966))

For any $A > 0$, uniformly for $x/(\log x)^A \leq q \leq x$, we have

$$\sum_{g \leq Q} \frac{1}{\varphi(g)} \sum_{\substack{\alpha \leq 1 \\ (n, q) = 1}} \left(\psi(x, q, a) - \frac{x}{\varphi(q)} \right)^2 \ll xQ \log^2 x.$$

Proof: Let $\psi^*(x, \chi) = \psi(x, \chi)$ if χ is nonprincipal, and $\psi^*(x, \chi_0) = \psi(x, \chi_0) - x$.

Start with $\psi(x, q, a) - \frac{x}{\varphi(q)} = \frac{1}{\varphi(q)} \sum_{\chi \in \mathcal{C}(q)} \chi(a) \psi^*(x, \chi)$.

Square both sides and sum over a:

$$\sum_{\alpha = 1}^q \left(\psi(x, q, a) - \frac{x}{\varphi(q)} \right)^2 = \frac{1}{\varphi(q)} \sum_{\chi_1, \chi_2 \in \mathcal{C}(q)} \psi(x, \chi_1) \psi(x, \chi_2) \sum_{\alpha = 1}^q \overline{\chi_1(a)} \chi_2(a)$$

$$= \frac{1}{\varphi(q)} \sum_{\chi \in \mathcal{C}(q)} \left| \psi(x, \chi) \right|^2.$$

If χ is induced by primitive χ_1, then (cf. proof of Lemma 6.4)

$$\psi^*(x, \chi) = \psi^*(x, \chi_1) + O(\log^2 x).$$

Summing on $g \leq Q$ we obtain

$$\sum_{g \leq Q} \sum_{\alpha = 1}^q \left| \psi(x, g, a) - \frac{x}{\varphi(g)} \right|^2 = \sum_{g \leq Q} \frac{1}{\varphi(g)} \sum_{\chi \in \mathcal{C}(g)} \left| \psi(x, \chi) \right|^2 + O(xQ \log^2 x)$$

since $|\psi^*(x, \chi)| \ll x$. The sum on the right is

$$\ll \sum_{g \leq Q} \frac{1}{\varphi(g)} \sum_{\chi \in \mathcal{C}(g)} \left| \psi^*(x, \chi) \right|^2 \sum_{\chi \in \mathcal{C}(g)} \frac{1}{\varphi(g)} = (\log x) \sum_{\chi \in \mathcal{C}(g)} \max_{\chi \leq \chi_0} \left| \psi^*(x, \chi) \right|^2 + \sum_{\chi \leq \chi_0} \frac{1}{\varphi(g)} \sum_{\chi \leq \chi_0} \left| \psi^*(x, \chi) \right|^2.$$

By Theorem SW, the first sum on g, is $\ll x^2 e^{-c/\sqrt{\log x}}$, $c > 0$. By Theorem 6.8, the sum on g is

$$\ll (x + 2^j) \sum_{n \leq x} \Lambda(n)^2 \ll (x + 2^j) x \log x.$$

We find that the left side of (6.12) is

$$\ll xQ \log^2 x + (\log x) \sum_{\lambda \leq \lambda_0} \left(\frac{x^2 \log x}{2^j} + 2^i x \log x \right) \ll xQ \log^2 x.$$

Remark: Montgomery (1970) showed that the left side of (6.12) is actually

$$\ll xQ \log x.$$