Problem 1
Problem 3.3. $P(n)$ implies both $P(n - 1)$ and $P(n + 1)$.

Solution
Let $Q(n)$ be the statement “$P(n)$ and $P(-n)$ are both true.” We prove that $Q(0), Q(1), \ldots$ are all true by induction. $Q(0)$ is given to be true. Assuming that $Q(n)$ is true, we know that $P(n)$ and $P(-n)$ are both true. But $P(n)$ implies $P(n + 1)$, and $P(-n)$ implies $P(-n - 1)$. Hence $Q(n + 1)$ is true. By induction, $Q(n)$ is true for every n. Therefore, $P(n)$ is true for all $n \in \mathbb{Z}$. (This is a kind of “two-sided” induction)

Problem 2
Problem 3.49 (b). determine the $n \in \mathbb{N}$ so that $2^n \geq (n + 1)^2$.

Solution
The inequality holds for all $n \geq 6$. By direct calculation, the inequality fails for $1 \leq n \leq 5$. Let $P(n)$ be the statement $2^n \geq (n + 1)^2$. $P(6)$ is true because $64 \geq 49$. Assume $k \geq 6$ and $P(k)$ is true, that is, $2^k \geq (k + 1)^2$. Doubling both sides of the inequality yields $2^{k+1} \geq 2(k + 1)^2$. We want the right side to be $\geq (k + 2)^2$. Since $k \geq 6$, $k^2 \geq 36$, so

$$2^{k+1} \geq 2(k + 1)^2 = k^2 + 4k + 2 + k^2 \geq k^2 + 4k + 4 = (k + 2)^2,$$

which proves $P(k + 1)$.

Problem 3
Problem 3.56/ $a_n = 2a_{n-1} + 3a_{n-2}$ for $n \geq 2$.

Solution
(a) If a_1 and a_2 are odd, then a_n is odd for all $n \in \mathbb{N}$. Proof by induction on n. For the base case, we are given that a_1 and a_2 are odd. Suppose $k \geq 2$ and assume a_1, \ldots, a_k are all odd. In particular, a_k and a_{k-1} are odd. By the recurrence formula, $a_{k+1} = 2a_k + 3a_{k-1}$. Always, $2a_k$ is even. Since a_{k-1} is odd, $3a_{k-1}$ is odd. An even number plus an odd number is odd, so a_{k+1} is odd. By induction, a_n is odd for all $n \in \mathbb{N}$.

(b) Prove that $a_n = \frac{1}{2}(3^{n-1} - (-1)^n)$ for all n. The formula holds for $n = 1$ and $n = 2$, and these two cases form the base step. Assume that $k \geq 2$ and that the formula is true for $1 \leq n \leq k$. In particular, the formula is true for $n = k$ and $n = k - 1$. Then

$$a_{k+1} = 2a_k + 3a_{k-1} = \frac{1}{2}(3^{k-1} - (-1)^k) + \frac{3}{2}(3^{k-2} - (-1)^{k-1}) = \frac{1}{2}(3^k - (-1)^{k+1}),$$

since $2(-1)^k + 3(-1)^{k-1} = (-1)^{k-1}(-2 + 3) = (-1)^{k-1} = (-1)^{k+1}$. Thus, the formula is true for $n = k$. By induction, the formula is true for all $n \in \mathbb{N}$.
Problem 4

Let \(F_k \) denote the \(k \)-th Fibonacci number: \(F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2} \) for \(n \geq 2 \).

(a) Prove that \(2 | F_{3k} \) for every \(k \geq 0 \).

(b) Prove that \(3 | F_{4k} \) for every \(k \geq 0 \).

Solution

(a) Since \(F_0 = 0 \), the statement is true for \(k = 0 \). Now suppose that the statement is true for \(n = k, \) where \(k \geq 0 \). That is, \(2 | F_{3k} \). We want to express \(F_{3(k+1)} \) in terms of \(F_{3k} \), which we can do by repeated application of the Fibonacci recurrence:

\[
F_{3k+3} = F_{3k+2} + F_{3k+1} = 2F_{3k+1} + F_{3k}.
\]

Since \(2 | F_{3k} \), it follows that \(2 | 2F_{3k+1} + F_{3k} \) also, which means \(2 | F_{3(k+1)} \). By induction, \(2 | F_{3k} \) for every \(k \geq 0 \).

(b) The statement is true when \(n = 0 \), as \(F_0 = 0 \). Now suppose that the statement is true for \(n = k, \) where \(k \geq 0 \). (We can use simple induction here). We want to express \(F_{4(k+1)} \) in terms of \(F_{4k} \), which we can do by repeated application of the Fibonacci recurrence:

\[
F_{4k+4} = F_{4k+3} + F_{4k+2} = (F_{4k+2} + F_{4k+1}) + (F_{4k+1} + F_{4k})
= F_{4k+2} + 2F_{4k+1} + F_{4k} = (F_{4k+1} + F_{4k}) + 2F_{4k+1} + F_{4k}
= 3F_{4k+1} + 2F_{4k}.
\]

Since \(3 | F_{4k} \) by hypothesis and \(3 | 3F_{4k+1} + 2F_{4k} \), we conclude that \(3 | F_{4(k+1)} \) and completes the induction step. By induction, \(3 | F_{4n} \) for all \(n \geq 0 \).

Problem 5

Suppose you have an unlimited number of 5-cent and 7-cent stamps. Show that for any integer \(k \geq 24 \), you can make exactly \(k \) cents postage. Hint: If \(P(k) \) is the statement “it is possible to make \(k \) cents postage with 5-cent and 7-cent stamps”, prove that \(P(k) \implies P(k + 5) \).

Solution

First, check that 24, 25, 26, 27 and 28 cents postage is possible. Now assume that \(n \geq 28 \) and all postage amounts from 24 to \(n \) can be made. That is, for every \(k \) from 24 to \(n \), there are non-negative integers \(x, y \) so that \(k = 5x + 7y \). Consider \(n + 1 \). We know that \(n + 1 - 5 \geq 24 \), hence \(n + 1 - 5 \) cents postage is possible. By adding one 5-cent stamp, we make \(n + 1 \) cents postage. Therefore, \(P(n + 1) \) is true. By induction, all postage amounts \(n \geq 24 \) are possible.