Problem 1
(13.30) Let \(a_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} \) for \(n \in \mathbb{N} \).

(a) Show that the sequence \((a_n) \) is bounded.

(b) Show that \((a_n) \) is monotone. Conclude that \(\lim_{n \to \infty} a_n \) exists.

(c) (BONUS) Find \(\lim_{n \to \infty} a_n \), with proof.

Solution
(a) for every \(n \),
\[
a_n < \frac{1}{n} + \cdots + \frac{1}{n} = 1 \quad (n \text{ summands}).
\]
Thus, \((a_n) \) is bounded above by 1. Clearly, \(a_n > 0 \) for all \(n \).

(b) We compute
\[
a_{n+1} - a_n = \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1} > \frac{1}{2n+2} + \frac{1}{2n+2} - \frac{1}{n+1} = 0.
\]
Thus, \((a_n) \) is monotone increasing.

(c) the limit is \(\ln 2 \). Let \(f(t) = \frac{1}{t} \). Then
\[
a_n = \frac{1}{n} (f(1+1/n) + f(1+2/n) + \cdots + f(2)).
\]
This is a Riemann sum for \(\int_1^2 f(t) \, dt \), with \(n \) intervals, the approximation using the right-endpoint rule. Therefore,
\[
\lim_{n \to \infty} a_n = \int_1^2 \frac{dt}{t} = \ln 2.
\]

Problem 2
Problem 14.19.

Solution
Starting with \(x_2 \), the sequence is monotone decreasing and bounded below by \(\sqrt{3} \). Proof: suppose that \(\sqrt{3} \leq x_n \). Then
\[
x_{n+1} - x_n = \frac{3/x_n - x_n}{2} = \frac{3 - x_n^2}{2x_n} \leq 0
\]
and also
\[
x_{n+1}^2 = \left(\frac{x_n + 3/x_n}{2} \right)^2 = \frac{x_n^2 + 6 + (3/x_n)^2}{4} = \frac{x_n - 3/x_n}{2}^2 + 3 \geq 3.
\]
So we get the desired property by induction. Thus, by the Monotone Convergence Theorem, the limit \(L \) exists and \(L \geq \sqrt{3} \). By Limit Theorems, \(L = \frac{L + 3/L}{2} \), which implies \(L^2 = 3 \), \(L = \pm \sqrt{3} \), so \(L = \sqrt{3} \) since all terms are positive.
Problem 3

Problem 14.20. Suppose that \(x_1 > -1 \) and that \(x_{n+1} = \sqrt{1 + x_n} \) for \(n \geq 1 \). Prove that \(\lim x_n \) exists and find the limit.

Solution

First, show by induction that \(0 < x_n \) for all \(n \geq 2 \) (very easy). By limit theorems, if \(L = \lim x_n \) exists, then \(L^2 = 1 + L \), which implies that \(L = \frac{1+\sqrt{5}}{2} \). Because \(x_n > 0 \) for all \(n \geq 2 \), \(L = \frac{1+\sqrt{5}}{2} \) is the only possible limit.

If \(x_1 \leq \frac{1+\sqrt{5}}{2} \), then by induction it is easy to show \(x_n \leq x_{n+1} \leq \frac{1+\sqrt{5}}{2} \) for all \(n \); hence by the Monotone Convergence Theorem, \(\lim x_n \) exists. Therefore, \(\lim x_n = L = \frac{1+\sqrt{5}}{2} \).

If \(x_1 > \frac{1+\sqrt{5}}{2} \), then by induction it is easy to show \(x_n > x_{n+1} > \frac{1+\sqrt{5}}{2} \) for all \(n \); hence by the Monotone Convergence Theorem, \(\lim x_n \) exists. Therefore, \(\lim x_n = L = \frac{1+\sqrt{5}}{2} \).

Problem 4

Problem 14.30. \(x_1 = 1 \) and \(x_{n+1} = 1/(x_1 + \cdots + x_n) \). Prove that \(\lim x_n \) exists and find the limit.

Solution

First, \(0 < x_{n+1} \leq x_n \) for all \(n \), which is easy to prove by induction. Indeed, \(x_2 = 1/x_1 = 1 \) satisfies this inequality for \(n = 1 \). If \(0 < x_{m+1} \leq x_m \) for \(1 \leq m \leq n-1 \), then \(x_{n+1} = 1/(x_1 + \cdots + x_n) \) is clearly positive and less than \(x_n = 1/(x_1 + \cdots + x_{n-1}) \). By induction, \(0 < x_{n+1} \leq x_n \) for all \(n \), so \((x_n) \) is monotone non-increasing and bounded below by zero. By the Monotone Convergence Theorem, the limit \(L \) exists and \(L \geq 0 \).

Assume that \(L > 0 \). Then by properties of monotone sequences, \(x_n \geq L \) for every \(n \), and therefore for each \(n \geq 2 \),

\[
x_n = \frac{1}{x_1 + \cdots + x_{n-1}} \leq \frac{1}{L + \cdots + L} = \frac{1}{(n-1)L}.
\]

So we have \(0 < x_n \leq \frac{1}{(n-1)L} \) for \(n \geq 2 \), and by the Squeeze Law, \(\lim x_n = 0 = L \), a contradiction. Therefore, \(L = 0 \).

Alternatively, suppose \(\lim x_n = L \) exists and is not zero. We have

\[
x_n = (1 + \cdots + x_{n-1} + x_n) - (1 + \cdots + x_{n-1}) = \frac{1}{x_{n+1}} - \frac{1}{x_n}.
\]

By the limit laws, \(L = \frac{1}{L} - \frac{1}{L} = 0 \), a contradiction. So the only possible limit is zero.

Problem 5

Problem 14.42, variation. Measure zero. A set \(S \subset \mathbb{R} \) has measure zero is, for every \(\varepsilon > 0 \), there is a countable set of open intervals \(I_1, I_2, \ldots \) which contain \(S \) such that the sum of the lengths of the intervals is less than \(\varepsilon \). In plain language, the set \(S \) “takes up virtually no space”.

(a) Show that any countable subset of \(\mathbb{R} \) has measure zero. In particular, \(\mathbb{Q} \) has measure zero. Hint: consider \(\varepsilon /2^k \) for \(k = 1, 2, \ldots \) (Contrast this with the fact that \(\mathbb{Q} \) is dense in \(\mathbb{R} \).)

(b) Show that the union of countable many sets of measure zero also has measure zero.
Solution

(a) Let $A = \{a_1, a_2, \ldots\}$ be a countable set. Each element a_j is clearly inside the interval $I_j = (a_j - \varepsilon/2^{j+1}, a_j + \varepsilon/2^{j+1})$. The intervals $I_1 \cup I_2 \cup \cdots$ include all of A, and have total length $\varepsilon/2$.

(b) Let A_1, A_2, \ldots be sets with measure zero, and let $\varepsilon > 0$. For each i, there is a countable collection of open intervals $I_{i,1}, I_{i,2}, \ldots$ containing A_i and with the sum of the lengths of the intervals less than $\varepsilon/2^i$. Then $A_1 \cup A_2 \cup \ldots$ is covered by all of the sets $I_{i,j}$, which have total length less then ε. Moreover, the set of intervals $I_{i,j}$ is countable, as the set of indices is \mathbb{N}^2, which is a countable set.

Problem 6

(Problem 14.53, plus) **Conditionally convergent series.** (15 points) Consider the series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \cdots.$$ By Problem 3, the series converges but the series of absolute values of terms, $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (you may take this as a fact; no need to prove it). The series is called *conditionally convergent*, and you may have wondered why the name.

(a) Show that the series converges to a sum less than 1 (should be very short and easy).

(b) Consider the following series with the same terms but rearranged:

$$1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} - \frac{1}{2} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15} - \frac{1}{4} + \cdots,$$

where the pattern is four positive terms, then one negative term. Prove that the sum of this series is larger than 1 (you may assume that the limit exists).

(c) Find a rearrangement of the terms of the series that has sum greater than 100, and a rearrangement of the terms of the series that has sum less than -100.

Solution

(a) By the analysis of the alternating series in the previous problem, the first partial sum $a_1 = 1$ is an upper bound for the series (the odd partial sums are decreasing).

(b) Let s_n be the n-th partial sum (sum of the first n terms). We claim that $s_{5k} > 1$ for all k. This is true for $k = 1$ by checking. If true for a particular k, then

$$s_{5(k+1)} = s_{5k} + \frac{1}{8k+1} + \frac{1}{8k+3} + \frac{1}{8k+5} + \frac{1}{8k+7} - \frac{1}{2k+2} > s_{5k} + \frac{4}{8k+8} - \frac{1}{2k+2} = s_{5k} + 1.$$

By induction, $s_{5k} > 1$ for all k. Assuming the limit exists, the subsequence s_{5k} exists and has the same limit, hence this limit is larger than 1.

(c) The main point is that the positive terms sum to ∞ and the negative terms sum to ∞, and $\infty - \infty$ is an “indeterminate form”. To get a sum more than 100, take an initial sequence of positive terms $1 + \frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{2k+1}$ whose sum is larger than 101. Then take $-\frac{1}{2}$. Next take more positive terms $\frac{1}{2k+3} + \cdots + \frac{1}{2m+1}$ whose sum is larger than $\frac{1}{2}$ (possible because the tail of the series starting at $\frac{1}{2k+3}$ diverges). Then take $-\frac{1}{4}$. Then take positive terms $\frac{1}{2m+3} + \cdots + \frac{1}{2n+1}$ with sum larger than $\frac{1}{4}$, etc. The construction for a sum less than -100 is similar, by first taking negative summands $-\frac{1}{2} - \frac{1}{4} - \cdots - \frac{1}{2m}$ that sum to less than -102, then adding 1, then more negative summands, etc.