Thus: Let \(f \) be analytic everywhere inside \(\Delta z \)
S.C. counterclockwise.

If \(z_0 \) is any point interior to \(C \),

\[
J(z_0) = \frac{1}{2\pi i} \oint \frac{f(z_1) \, dz}{z-z_0}.
\]

ie, the values of analytic \(f \) are completely

\(\text{det} \) by values of \(f \) \(\text{on} \) \(C \).

\[\begin{align*}
\Delta \Omega; \quad \oint \frac{f(z)}{z-z_0} \, dz &= \oint \frac{f(z)}{z-z_0} \, dz, \\
\text{Take } C_0: & \quad \oint \frac{f(z)}{z-z_0} \, dz = \oint \frac{f(z)}{z-z_0} \, dz, \\
\text{Thus, } & \quad \frac{f(z)}{z-z_0} \text{ is analytic on } \gamma_0, C \text{, and in the region 0 the-}
\end{align*}\]
Here: \[\oint \frac{dz}{z-\pi} = 2\pi i. \]

\[G: \pi^2 = 2\pi i. \]

\[dt: = \rho \cdot e^{i\theta} \cdot d\theta \]

\[= 1 \int \frac{f(t)}{z-t} \, dz = (2\pi i) f(\pi) = \oint \frac{f(z) - f(\pi)}{z-\pi} \, dz. \]

Sine \(f \) is analytic, \(-i \) continuous.

for \(\Re z \gt 0, \) \(\exists \delta \) s.t.

\[|f(z) - f(\pi)| < \varepsilon \quad \text{where} \quad |z-\pi| < \delta. \]

Let \(\rho < \delta. \) \(\Rightarrow \) \(|z-\pi| < \rho < \delta. \) \(\therefore \)

\[\left| \int \frac{f(z) - f(\pi)}{z-\pi} \, dz \right| < \frac{\varepsilon}{\rho} \cdot 2\pi \rho. \]

So: \[\left| \oint \frac{f(z)}{z-\pi} \, dz - 2\pi i f(\pi) \right| < 2\pi \varepsilon. \]
EX: \(C: \) pos. oriented circle \(|z| = 1\) about the origin.

\(f(z) = \frac{\cos t}{z^2 + 9} \) analytic.

\[
\int_{C} \frac{\cos t}{t(z^2 + 9)} \, dz = \int_{C} \frac{\cos t}{2t} \, dz = 2\pi i f(0) = \frac{2\pi i}{9}
\]
Extended CIF: \(\text{let } f \text{ be analytic} \)

\[
\frac{f(t+\Delta t) - f(t)}{\Delta t} = \frac{1}{2\pi i} \int_C \frac{f(s)}{s(t+\Delta t) - s(t-\Delta t)} ds
\]

Let \(d = \text{small dist. between } t \text{ and } C \) and assume \(0 < |\Delta t| < d \).

\[
\frac{f(t+\Delta t) - f(t)}{\Delta t} = \frac{1}{2\pi i} \int_C \frac{1}{s(t+\Delta t) - s(t-\Delta t)} ds
\]

\[
= \frac{1}{2\pi i} \int_C \frac{f(s)}{(s-t+\Delta t)(s-t-\Delta t)} ds
\]

\[
= \frac{1}{(s-t)^2} \frac{\Delta(s-t)}{(s-t-\Delta t)(s-t+\Delta t)} = \frac{s-t+\Delta t-\Delta z}{(s-t-\Delta t)(s-t+\Delta t)^2}
\]

\[
= \frac{1}{(s-t)^2} + \frac{\Delta z}{(s-t-\Delta t)(s-t)^2}
\]

\(|s-t| \geq d \) \& \(|\Delta t| < d \) so:

\[
|s-t-\Delta t| \geq |s-t| - |\Delta t| \geq d - |\Delta t| > 0
\]
\[\lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t} = -\frac{1}{2\pi i} \int_C \frac{f(s)}{(s-t)^2} ds = 0 \]

So:
\[f'(t) = \frac{1}{2\pi i} \int_C \frac{f(s)}{(s-t)^2} ds \]

So:

Thm: Extended C.I.F.

Let \(f \) be analytic inside and on a simple closed contour \(C \), taken in positive sense.

If \(z_0 \) is any pt interior to \(C \), then:

\[f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_C \frac{f(z)dz}{(z-z_0)^{n+1}}, \quad n=0, 1, 2, \ldots \]
If C is positively oriented unit circle $|z| = 1$, and $f(1) = \frac{2\pi}{3}$

$$\oint_{|z|=1} \frac{2\pi}{3z} \, dz = f''(1) = \frac{8\pi i}{3} \cdot f''(1) = \frac{8\pi i}{3}.$$

Some consequences:

There 1. If f is analytic at a given point, its derivatives of all orders are so, too.

2. Let f be analytic at z_0. Then:

$$f''(z) = \frac{2}{2\pi i} \oint_{|z|=\epsilon} \frac{f(z)}{(z-z_0)^3} \, ds$$

Since f'' exist in this nbhd f' is analytic in this nbhd.

Note: Apply this to calculate f''' and $f^{(4)}$.

Example:

Let C_0 be a unit circle with radius $\epsilon/2$.
Corollary If \(f(z) = u(x,y) + i v(x,y) \) is analytic at a point \(z = (x,y) \), then its components \(u \) & \(v \) have continuous partial derivatives of all orders at that point.

Bec: If \(f \) is analytic, \(\Rightarrow f', f'' \text{ etc.} \) cont.
\[\Rightarrow u_x, u_y \text{ are continuous} \]
Also since \(f'' \) is analytic, \(u_{xx}, u_{xy}, u_{yy} \) are cont.

THEOREM Let \(f \) be continuous on \(\partial \Omega \) (the boundary).

If \(f \) has no poles on \(\partial \Omega \),

in every closed contour \(\Gamma \subset \Omega \), then \(f \) is analytic throughout \(\Omega \).

Bec: Use hyp. 3 satisfied, \(f \) analytic outside.

If \(Ef + F'h = F'h \) \& \(F \) analytic,

By Thm 1, \(F' \) is also analytic. \(\Rightarrow f \) is analytic.
Theorem 3 \hspace{1cm} Suppose that \(f \) is analytic inside and on a positively oriented circle \(C \), centered at \(z_0 \) with radius \(R \).

If \(M_R \) denotes the max. value of \(|f(z)| \) on \(C \),

\[
|f^{(n)}(z_0)| \leq \frac{n! M_R}{R^n} \quad (n = 1, 2, \ldots)
\]

Cauchy's Inequality.

\[
|f^{(n)}(z_0)| = \left| \frac{n!}{2\pi i} \oint_{C} \frac{f(z) \, dz}{(z-z_0)^{n+1}} \right| \leq \frac{n! M_R}{2\pi R^{n+1}} \cdot 2\pi R
\]